testo 6681 · Humidity transmitters
testo 6610 · Probes
P2A software · Parameterizing, adjusting and analyzing software

Instruction manual Volume 1
Safety and the environment

Avoiding electrical hazards
► Never use the instrument and connected probes to measure on or near live parts!
► Damaged mains cables must only be replaced by authorized personnel.
► Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.
► You must always comply with the regulations applicable in your country to the opening and repair of electrical equipment.

Avoiding personal injury/damage to equipment
► Installation, setting and calibration work must only be carried out by qualified and authorized personnel!
► Only open the instrument when this is expressly described in the instruction manual for installation, maintenance or repair purposes.
► Observe the permissible storage, transport and operating temperatures.
► Never store or operate the product with solvents and do not use any desiccants.
► Do not use the instrument for control purposes at the same time as operating or servicing the transmitter.
► Only operate the product properly, for its intended purpose and within the parameters specified in the technical data. Do not use force.
► Carry out only the maintenance and repair work that is described in the documentation. Follow the prescribed steps when doing so. Use only OEM spare parts from Testo.

Any additional work must only be carried out by authorized personnel. Otherwise Testo will not accept any responsibility for the proper functioning of the instrument after repair and for the validity of certifications.

Protecting the environment
► Send the product back to Testo at the end of its useful life. We will ensure that it is disposed of in an environmentally friendly manner.
Please read this documentation through carefully and familiarize yourself with the product before putting it to use. Keep this document to hand so that you can refer to it when necessary. Hand this documentation on to any subsequent users of the product.

The following conventions are followed in this document:

<table>
<thead>
<tr>
<th>Character/display:</th>
<th>Explanation/example</th>
</tr>
</thead>
</table>
| ! | With the signal word **Warning!**:
| | Warns against hazards which could result in serious physical injury if the precautionary measures indicated are not taken, e.g.:
| | De-energize the mains connection before connecting the transmitter! |
| ! | With the signal word **Caution!**:
| | Warns against hazards which could result in minor physical injury or damage to equipment if the precautionary measures indicated are not taken, e.g.:
| | Observe the permissible operating temperature! |
| i | Important information, e.g.:
| | Administrator rights are required to install the program under Windows® 7, 8 and 10. |
| ✓ | Aim of action, e.g.:
| ✓ | **Assembling the instrument at the process connection:** |
| ✓ | Requirement that must be met, e.g.:
| ✓ | USB drivers are installed. |
1 Steps are numbered if a certain sequence of actions must be followed, e.g.:

1 Loosen and remove housing screws.
2 Remove the upper part of housing.

- A step is not numbered if there are no further steps or if the step is optional, e.g.:
 - Insert probe connector into socket of testo 6681 until it engages.

"to" Example entries are in inverted commas, e.g.:
The value "0" results in

Bold type Elements of the program interface or instrument display, e.g.:
The instrument designation appears in the instrument/parameter file list.

Select **Main Menu Channel 1** and confirm with SET.

...>... Functions/paths within a menu, e.g.:

Start > All Programmes > Testo > Transmitter Software.

[] Buttons which start an action, e.g.:

Confirm the software key with [OK].

CAPITAL LETTERS Keys on the instrument or keypad, e.g.:

Press ESC.
Contents

1 TRANSMITTER .. 6
 1.1 Specifications .. 6
 1.1.1 Functions and use .. 6
 1.1.2 Scope of delivery .. 6
 1.1.3 Accessories ... 7
 1.1.4 Technical Data ... 7
 1.1.5 Dimensions ... 8
 1.2 Product description .. 9
 1.2.1 At a glance .. 9
 1.2.2 Usable probes ... 10
 1.2.3 Display and keypad ... 10
 1.2.4 Service interface ... 10
 1.2.5 Relay board (option) ... 10
 1.2.6 Analog outputs .. 11
 1.2.7 Parameters ... 12
 1.2.8 Scaling ... 12
 1.2.9 Alarm handling .. 15
 1.3 Commissioning ... 16
 1.3.1 Assembling the instrument .. 16
 1.3.2 Connecting the instrument .. 19
 1.3.3 Adjusting the instrument .. 31
 1.4 Operation .. 41
 1.4.1 Relationship between user menu and mini-DIN socket is active 41
 1.4.2 Key cover .. 42
 1.4.3 Password protection ... 43
 1.4.4 Structure of user menu ... 43
 1.4.5 Overview of the testo 6681 user menu ... 45
 1.4.6 The individual main menus .. 47
 1.5 Status, warning and error messages .. 59
 1.5.1 Status messages .. 59
 1.5.2 Warning messages .. 60
 1.5.3 Error messages .. 62
 1.5.4 Handling alarm messages .. 63
 1.5.5 Namur fault conditions ... 65
 1.6 Maintenance and cleaning .. 66
 1.6.1 Maintaining the instrument .. 66
 1.6.2 Cleaning the instrument ... 66
1 Transmitter

1.1 Specifications

1.1.1 Functions and use

The testo 6681 humidity transmitter is used in conjunction with plug-in, adjusted probes from the testo 6610 range.

Please refer to volume 2, chapter 2 for information about commissioning, operating and maintaining the testo 6610 probe.

The testo 6681 humidity transmitter is suitable for the following applications, for example:

- Process instrumentation
- Clean rooms
- Test benches
- Drying processes
- Production and storage air quality
- Complex room climate applications.

1.1.2 Scope of delivery

The scope of delivery of the testo 6681 humidity transmitter includes the following:

- Key cover
- Rear panel bracket
1.1.3 Accessories

The following accessories are available for the testo 6681 humidity transmitter:

- Protection caps for probes
- Mains unit
- P2A software (parameterizing, adjusting and analyzing software)
- Assembly accessories.

Information about accessories and their order numbers can be found in volume 2, chapter 4.2 or on the website at www.testo.com.

1.1.4 Technical Data

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Maximum load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity (various variables and units)</td>
<td>2-wire: 100 to 750 Ω</td>
</tr>
<tr>
<td>Temperature (°C/°F)</td>
<td>4-wire: 500 Ω (power output)</td>
</tr>
<tr>
<td>Measuring range</td>
<td></td>
</tr>
<tr>
<td>Depends on probe</td>
<td></td>
</tr>
<tr>
<td>Accuracy</td>
<td></td>
</tr>
<tr>
<td>Depends on probe</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td></td>
</tr>
<tr>
<td>- 0.1 % RH or 0.1 °C/0.1 °F</td>
<td></td>
</tr>
<tr>
<td>Meas. cycle</td>
<td></td>
</tr>
<tr>
<td>- 1/s</td>
<td></td>
</tr>
<tr>
<td>Interface</td>
<td></td>
</tr>
<tr>
<td>Mini-DIN for P2A software</td>
<td></td>
</tr>
<tr>
<td>(parameterizing and adjusting software)</td>
<td></td>
</tr>
<tr>
<td>Voltage supply</td>
<td></td>
</tr>
<tr>
<td>- 2-wire: 18 to 24 V DC ± 10%</td>
<td></td>
</tr>
<tr>
<td>- 4-wire (separate signal and supply lines): 20 - 30 V AC/DC, 300 mA power consumption</td>
<td></td>
</tr>
</tbody>
</table>
Analog output
- 4 to 20 mA ± 0.03 mA (2-wire) or
- 0 to 1 V ± 1.5 mV (4-wire) or
- 0 to 5 V ± 7.5 mV (4-wire) or
- 0 to 10 V ± 15 mV (4-wire) or
- 0 to 20 mA ± 0.03 mA (4-wire) or
- 4 to 20 mA ± 0.03 mA (4-wire)

Resolution of analog output
- 12 bit

Relay
- 4 relays, 250 V AC/DC, 3 A (optional)

Display
- 2-line LCD with plain text line (optional)

Housing operating temperature
- -40 to 70 °C/-40 to +158 °F, with display from 0 - 50 °C/+32 to +122 °F
- With integrated relay: -40 to +60°C

Storage temperature
- -40 to 80 °C/-40 to +176 °F

Housing, weight
- Metal, 1.960 kg/432 lb

Protection class
- IP 65 only if the transmitter is wired and/or seal plugs are inserted

Directives, standards and tests

1.1.5 Dimensions

<table>
<thead>
<tr>
<th>Dimensions in mm</th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>With M 20 cable couplings</td>
<td>144</td>
<td>147</td>
</tr>
<tr>
<td>With NPT cable couplings</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>With plug-in connections</td>
<td>143</td>
<td></td>
</tr>
</tbody>
</table>
1.2 Product description

1.2.1 At a glance

1. Keys (only with optional display)
2. Service flap screw connection (self-locking, 2x)
3. Display (optional)
4. Service flap
5. M 16 x 1.5 screw connection*, e.g. analog outputs
6. M 16 x 1.5 screw connection*, e.g. voltage supply
7. Earthing/PE connection
8. M 20 x 1.5 screw connection*, e.g. relay R 3 and R 4
9. Eyelet for measuring point panel
10. M 20 x 1.5 screw connection*, e.g. relay R 1 and R 2
11. Probe connector (testo 6610)
12. Upper part of housing
* Alternatively, NPT cable couplings or M plug-in connections are available

13. Housing screws
14. Socket for probe connector
15. Hole for fastening to rear panel bracket (M3 x 6 screw)
16. Plastic bracket for assembly on rear panel
1.2.2 Usable probes

The testo 6681 humidity transmitter can be used with the following probes:

<table>
<thead>
<tr>
<th>probe</th>
<th>Article no.</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>testo 6611</td>
<td>0555 6610-L11</td>
<td>Wall probe version; accuracy to ± 1 % RH; temperature range -20 °C to +70 °C/-4 to +158 °F</td>
</tr>
<tr>
<td>testo 6612</td>
<td>0555 6610-L12</td>
<td>Duct probe version; accuracy to ± 1 % RH; temperature range -30 °C to +150°C/-22 to +302 °F</td>
</tr>
<tr>
<td>testo 6613</td>
<td>0555 6610-L13</td>
<td>Cable probe version; accuracy to ± 1 % RH; temperature range -70 bis +180 °C/-94...+356 °F</td>
</tr>
<tr>
<td>testo 6614</td>
<td>0555 6610-L14</td>
<td>Heated cable probe version; accuracy to ± 1.0 % RH; temperature range -40 °C to +180 °C/-40 to +356 °F</td>
</tr>
<tr>
<td>testo 6615</td>
<td>0555 6610-L15</td>
<td>Trace humidity cable probe version; dew point to -60 °Ctd; temperature range -40 °C to +120°C/-40 to +248 °F</td>
</tr>
<tr>
<td>testo 6617</td>
<td>0555 6610-L17</td>
<td>Cable with cover electrode monitoring probe version; temperature range -40 °C to +180 °C/-40 to +356 °F</td>
</tr>
</tbody>
</table>

1.2.3 Display and keypad

The display option allows the testo 6681 humidity transmitter to be operated via the display and four keys.

The LCD display consists of two 7-segment lines for displaying readings and units and of an information line (for status messages, for example).

The brightness and contrast of the display and the background lighting (permanent or off) can be changed via the user menu or the P2A software.

1.2.4 Service interface

Behind the service flap is the parameterizing socket (mini-DIN) as an interface to the P2A software.

1.2.5 Relay board (option)

This has a floating switch capacity of 250 V AC/3 A. The switching limits and hysteresis as well as the function as relay for the collective alarm can be set via the display or the P2A software. Further features include:

- Function of changeover contacts (NC/NO contacts) freely selectable
• 12 terminals for a total of 4 relays.

 If no relays are available, settings for monitoring limit values or alarms can still be controlled via the display. The alarm status will be shown on the display.

Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.

1.2.6 Analog outputs

For analog outputs, the testo 6681 has either

• 2 or optionally 3 current outputs of 4 to 20 mA (2-wire)/0 to 20 mA (4-wire)/4 to 20 mA (4-wire) or
• 2 or optionally 3 voltage outputs of 0 to 1 V/0 to 5 V/0 to 10 V (4-wire).

The transmitter can be ordered with a third analog output as an option.

In 2-wire operation, channel 1 is used for the supply. The two or optionally three channels are galvanically isolated in both 2- and 4-wire operation.

Operation with the testo 6614 heated probe, the testo 6615 trace humidity probe, the relay option or with the background lighting of the optional display are only possible in 4-wire operation.
1.2.7 Parameters

The following parameters are displayed:

- Relative humidity in %RH (technical)
- Relative humidity in % WMO* (calculation according to the WMO standard)
- Temperature °C and °F
- Dewpoint in °Ctd and °Ftd
- Absolute humidity in g/m³ and gr/ft³
- Degree of humidity in g/kg and gr/lb
- Enthalpy in kJ/kg and BTU/lb
- Psychrometer temperature in °Ctw and °Ftw
- Water vapour partial pressure in hPa and "H₂O (inch H₂O)
- Water content in ppmvol and % vol
- Dewpoint of H₂O₂ mixture in °Ctm and °Ftm
- Mixture humidity H₂O₂ in %RHm

* It is possible that condensation appears as of a displayed humidity starting from 70 % and is shown on the display. This unit is used in meteorology, for example. According to the WMO, the Magnus coefficient is used for sub-cooled water in the calculation of relative humidity.

Calculated humidity variables correspond to the medium of air. With other gases/gas compositions, deviations may occur, e.g. with the enthalpy

1.2.8 Scaling

There are three types of min./max. values:

1. The measuring range
 The maximum sensor performance is in this range. Values outside of the measuring range are displayed via messages, for example. Measuring range, see table (below).

2. Standard scaling
 The output signals are assigned to this measuring range as standard:
 - during delivery if no entries are made in the order code
after exchanging the unit, the measuring range recorded in the instrument is applied as standard.

The transmitter even retains its scaling with the voltage disconnected.

Measuring range, see table (below).

3 The maximum settings for the manual scaling
- the values are not expressly given in the table. The maximum limits can be calculated as follows:
 \[X = \text{difference between MIN. and MAX. value of the standard scaling} \]
 \[(\text{Max. value of standard}) + (50 \% \text{ of } X) \]
 \[(\text{Min. value of standard}) - (50 \% \text{ of } X) \]
- It is thus possible to scale beyond the measuring range, e.g. for the adjustment of the scaling limits to standard values of a PLC.

However, the physical measurement range limits are the deciding factor when defining alarms.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>probe</th>
<th>Measuring range Physical at 1013 hPa</th>
<th>Standard scaling MUF measuring range</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>MIN</td>
<td>MAX</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>6611</td>
<td>-20</td>
<td>+70</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>6611</td>
<td>-4</td>
<td>+158</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>6612</td>
<td>-30</td>
<td>+150</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>6612</td>
<td>-22</td>
<td>+302</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>6613</td>
<td>-70</td>
<td>+180</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>6613</td>
<td>-94</td>
<td>+356</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>6614, 6617</td>
<td>-40</td>
<td>+180</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>6614, 6617</td>
<td>-40</td>
<td>+356</td>
</tr>
<tr>
<td></td>
<td>°C</td>
<td>6615</td>
<td>-40</td>
<td>+120</td>
</tr>
<tr>
<td></td>
<td>°F</td>
<td>6615</td>
<td>-40</td>
<td>+248</td>
</tr>
<tr>
<td>relative humidity</td>
<td>% RH</td>
<td></td>
<td>0</td>
<td>+100</td>
</tr>
<tr>
<td>WMO relative humidity</td>
<td>% RH,</td>
<td></td>
<td>0</td>
<td>+100</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>probe</td>
<td>Measuring range Physical at 1013 hPa</td>
<td>Standard scaling MUF measuring range</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Dewpoint</td>
<td>°Ctd</td>
<td>6611</td>
<td>MIN -20</td>
<td>MAX +70</td>
</tr>
<tr>
<td></td>
<td>°Ftd</td>
<td>6611</td>
<td>MIN -4</td>
<td>MAX +158</td>
</tr>
<tr>
<td></td>
<td>°Ctd</td>
<td>6612, 6613, 6614, 6617</td>
<td>MIN -20</td>
<td>MAX +100</td>
</tr>
<tr>
<td></td>
<td>°Ftd</td>
<td>6612, 6613, 6614, 6617</td>
<td>MIN -112</td>
<td>MAX +212</td>
</tr>
<tr>
<td></td>
<td>°Ctd</td>
<td>6615</td>
<td>MIN -60</td>
<td>MAX +30</td>
</tr>
<tr>
<td></td>
<td>°Ftd</td>
<td>6615</td>
<td>MIN -148</td>
<td>MAX +212</td>
</tr>
<tr>
<td>Mixture dewpoint (H2O2)</td>
<td>°Ctm</td>
<td></td>
<td>MIN -20</td>
<td>MAX +100</td>
</tr>
<tr>
<td></td>
<td>°Ftm</td>
<td></td>
<td>MIN -4</td>
<td>MAX +212</td>
</tr>
<tr>
<td>Absolute humidity</td>
<td>g/m³</td>
<td>all probes</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>gr/ft³</td>
<td></td>
<td>0</td>
<td>250</td>
</tr>
<tr>
<td>Degree of humidity</td>
<td>g/kg</td>
<td>all probes</td>
<td>0</td>
<td>13300</td>
</tr>
<tr>
<td></td>
<td>gr/lb</td>
<td></td>
<td>0</td>
<td>93000</td>
</tr>
<tr>
<td>Enthalpy</td>
<td>kJ/kg</td>
<td></td>
<td>MIN -40</td>
<td>99999</td>
</tr>
<tr>
<td></td>
<td>BTU/lb</td>
<td></td>
<td>MIN -18</td>
<td>43000</td>
</tr>
<tr>
<td>Psychrometer temperature</td>
<td>°Ctw</td>
<td></td>
<td>MIN -40</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>°Ftw</td>
<td></td>
<td>MIN -58</td>
<td>210</td>
</tr>
<tr>
<td>Water content</td>
<td>ppm vol H2O</td>
<td></td>
<td>0</td>
<td>99999</td>
</tr>
<tr>
<td></td>
<td>% vol</td>
<td></td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Water vapour partial pressure</td>
<td>hPa</td>
<td></td>
<td>0</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>inchH2O</td>
<td></td>
<td>0</td>
<td>400</td>
</tr>
</tbody>
</table>
1.2.9 Alarm handling

For upper and lower alarm limits, individual alarms as well as collective alarms can be specified. If the collective alarm function is activated, an alarm is triggered as soon as the alarm limit of an alarm is exceeded, if this alarm is assigned to the collective alarm.

The testo 6681 monitors limit values using relays. If a reading is outside the limit values, a relay to be specified by the user is switched.

If the reading reverts to more than a specified hysteresis below or above the limit value, the alarm is cancelled.

In addition, information about the occurrence of error/status messages can be provided by means of a collective alarm relay, see chapter 1.5, Status, warning and error messages.

If multiple alarm messages are activated at the same time, the last alarm is shown. If the alarm is cancelled again, the previous messages are no longer shown.

Example:

If the condensation of the probe begins, the "Condensation" message appears on the display and the "Start" status display. If the condensation is over, the status display changes from "Start" to "End".
1.3 Commissioning

1.3.1 Assembling the instrument

1.3.1.1 Wall mounting
(for testo 6611/6613/6614/6615/6617 probes)

- Attaching rear panel bracket

1. Remove locking screw (item (4) of drawing below) and detach rear panel bracket from plastic bracket (item (2) of drawing below).
2. Hold rear panel bracket in assembly position and mark the three drill holes.
3. Drill three holes (Ø 5 mm) and insert dowels where necessary.
4. Screw on rear panel bracket.
 Remember that the clamping brackets (1) must face the wall.
Fastening instrument to rear panel bracket

1. Slide plastic bracket (2) on the back of instrument onto rear panel bracket until it engages (see arrows).
2. Insert screw (4) through hole (3) and screw into rear panel bracket.
3. Insert probe connector (5) into socket until it engages.
1.3.1.2 Duct mounting (for testo 6612 probes)

1. Hold wall/duct bracket (order no. 0554 6651) (6) against duct wall (8) and mark drill holes for wall/duct bracket and probe shaft.

2. Drill a hole (Ø 12.5 mm) in the duct wall to feed through the probe shaft.

3. Fasten wall/duct bracket (6) to duct wall with screws (5).

4. Push probe shaft (9) with filter (10) through the middle hole of the mounting bracket.

The wall/duct bracket (6) has an O-ring (7) to seal it against the duct. Feed the probe shaft (9) carefully through the wall/duct bracket so that the O-ring is not damaged.
5 Fix the correct position of the probe shaft (9) with screw (11) and mark (insert probe shaft as far as possible).

6 Slide plastic bracket (2) on the back of the transmitter onto bracket (3, 4) until it engages.

 Take the weight of the transmitter into account. Ensure that the brackets (4, 6) are fastened securely.

7 Insert screw (1) through the hole on the top of the instrument and screw into bracket (3).

8 Insert probe connector (12) into socket until it engages.

1.3.2 Connecting the instrument

➢ Opening the instrument

1 Loosen screw connection (1) of service flap and open the flap.
2 Loosen and remove housing screws (2).
3 Remove upper part of housing from lower part (3) and place on a clean surface.

Warning!

Electrical voltage.

Danger of injury!
De-energize the mains connection before connecting the transmitter!

Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.
1.3.2.1 Overview of terminals

1. Lower part of housing
2. Relay board (option)
3. Relay terminals
4. Insulating trough for relay board
5. Terminal strip for voltage supply and analog outputs
6. Terminal board
7. Earthing terminal (internal)
8. M 16 x 1.5 screw connection*
9. Earthing terminal (external)
10. M 20 x 1.5 screw connection*
11. Eyelet for measuring point panel

* Alternatively, NPT cable coupling or M plug-in connection

The following description of the terminals refer to this overview and its numbering.
1.3.2.2 Connecting voltage supply and analog outputs

Terminal strip for voltage supply and analog outputs, item (5) of Overview of terminals, chapter 1.3.2.1.

1. Feed cable with voltage supply and analog signal lines through opened M 16 x 1.5 screw connection (item (8) in Overview of terminals, chapter 1.3.2.1).

2. Strip the cable ends, clamp wire end ferrules on and screw down onto voltage terminals.

3. Close M 16 x 1.5 screw connection (item (8) in Overview of terminals, chapter 1.3.2.1).

Wiring diagram for 2-wire system (4 - 20 mA)

18 to 24 VDC

2 or 3 channels
4 to 20 mA, max. load 100 to 750 Ω (at 24 V)
If the channels have to be galvanically isolated, a separate mains unit must be used for each channel.

Wiring diagram for 4-wire system
(0 to 20 mA/4 to 20 mA/0 to 1 V/0 to 5 V/0 to 10 V)

Requirement for the connecting cable of the supply:
- Insulated with cross-section of at least 0.25 sq. mm.
- The supply line must be secured against exceeding 8 A.
- An OFF switch must be installed in an easily accessible position close by and be marked as such.

1. Feed connection cables of the two, or optionally three, channels through opened M 16 x 1.5 screw connection (item (8) in *Overview of terminals, chapter 1.3.2.1*).
2. Strip the cable ends, clamp wire end ferrules on and screw to channel terminals as shown in diagram.
3. Close M 16 x 1.5 screw connection (item (8) in *Overview of terminals, chapter 1.3.2.1*).
1.3.2.3 Connecting the relay outputs

Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.

<table>
<thead>
<tr>
<th></th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NC/C/NO</td>
<td>NC/C/NO</td>
<td>NC/C/NO</td>
<td>NC/C/NO</td>
</tr>
</tbody>
</table>

Relay terminal strip, item (3) of Overview of terminals, chapter 1.3.2.1.

There is the option of twelve terminals for a total of four relays. The designations NC/C/NO (normally closed contact/root or pin/normally open contact) are etched on the surface of the board.

Using PG screw connection

1. Feed connection cables for the relays through opened M 20 x 1.5 screw connection (item (10) of Overview of terminals, chapter 1.3.2.1).
2. Strip cable ends and clamp on wire end ferrules.
3. Connect relays according to chosen function (NC/NO) (see diagrams below; relay 1 is shown as an example of a connection).

Using plug-in connections (optional)

Only insert or disconnect the plug-in connection when the voltage is disconnected.

4. Clean the connector of the probe line and the coupling of any foreign matter.

Do not disconnect the connector of the probe line from the instrument for extended periods to protect against contamination.
Connection note

- For the connection, a double-insulated mains cable (sheathed cable) with a cross-section of at least 1.5 sq. mm must be used.
- Cable connection (2) may not be routed in a loop within the tray (1).
- It is recommended that you always tie 3 cores to one another using a cable tie (3).
- The insulation of the cable must be fed at least 5 mm (4) into the tray.
Use of relay as NC contact (NC = normally closed)

The busy light (alarm/status light) is permanently on until the relay opens or the circuit is interrupted. This circuit can therefore be used to monitor the functionality of the alarm circuit, as a cable break, for instance, is indicated by the busy light going off.

Use of relay as NO contact (NO = normally open)

The busy light (alarm/status light) is permanently on until the relay opens or the circuit is interrupted. This circuit can therefore be used to monitor the functionality of the alarm circuit, as a cable break, for instance, is indicated by the busy light going off.
The busy light (alarm/status light) only comes on when the relay is switched (closed). Monitoring the functionality of the alarm circuit is therefore not possible with this switching operation.

5 Close M 20 x 1.5 screw connection (item (10) in Overview of terminals, chapter 1.3.2.1).

1.3.2.4 Plug-in connection option

As an option, the PG screw connections of the signal and supply lines can be replaced with plug-in connections that are installed at the housing, see Fig. 1 and 2. The relay cabling occurs via standard cable entries and PG screw connections, see Fig. 3 and 4.
Plug-in connections for power supply and channels

M12 plug-in connection (5-pin) socket (1)

View of the plug-in connections in the installed state from outside

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V 24 -</td>
</tr>
<tr>
<td>2</td>
<td>V 24 +</td>
</tr>
<tr>
<td>3</td>
<td>+ Ch 1</td>
</tr>
<tr>
<td>4</td>
<td>- Ch 1</td>
</tr>
<tr>
<td>5</td>
<td>PE</td>
</tr>
</tbody>
</table>

M12 plug-in connection (5-pin) connector (2)

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Ch 2</td>
</tr>
<tr>
<td>2</td>
<td>+ Ch 2</td>
</tr>
<tr>
<td>3</td>
<td>+ Ch 3</td>
</tr>
<tr>
<td>4</td>
<td>- Ch 3</td>
</tr>
<tr>
<td>5</td>
<td>PE</td>
</tr>
</tbody>
</table>
1.3.2.5 Creating the PE/earthing terminal
As the testo 6681 has a metal housing, we recommend that the instrument be earthed. This can be done using the earthing terminal within the instrument (1) or the earthing terminal outside of the instrument (2).

Only use the external earthing terminal in dry interiors.

Using the earthing terminal within the instrument
1 Guide PE line (yellow-green) (5) through the cable coupling (x) and fit cable lug (8). Fix this to the side of the instrument (6) using M 5 screw (3), washer (4) and snap ring (7) on the internal earthing terminal (1).
2 Place the other cable end on an appropriate (PE) earth conductor, e.g. an earthing bar.

Using an earthing terminal outside of the instrument
1 Use shielded cable (5) with cable lug (8). Fix this using M 5 screw (3), washer (4) and snap ring (7) on the external earthing terminal (2).
2 Place the other cable end on an appropriate (PE) earth conductor, e.g. an earthing bar.
1.3.2.6 Closing the instrument

1. Place upper part of instrument on top of lower part (see arrow) and fix in place with housing screws (1).

2. Close the service flap and tighten screws (2).
1.3.3 Adjusting the instrument

The testo adjusting concept allows the entire signal chain from the sensor signal (probe) and the digital signal (within the transmitter) through to the analog signal (transmitter output signal) to be adjusted (see diagram).

<table>
<thead>
<tr>
<th>1-point adjustment</th>
<th>2-point adjustment</th>
<th>Analog adjustment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjustment via</td>
<td>Adjustment 11.3 % RH and 75.3 % RH via</td>
<td>Adjustment using a precise multimeter and transmission of analog reference value in</td>
</tr>
<tr>
<td>- P2A software</td>
<td>- Adjustment keys (1, 2)</td>
<td>- P2A software or</td>
</tr>
<tr>
<td>- User menu</td>
<td>- P2A software</td>
<td>- User menu</td>
</tr>
<tr>
<td></td>
<td>Adjustment 20 % rH and 80 % rH via</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- User menu</td>
<td></td>
</tr>
</tbody>
</table>

Either the 1-point adjustment or the 2-point adjustment is suitable for adjusting the sensor signal - digital signal chain.

The testo 6681 transmitter has digital probes whose adjustment information is stored in the probes' internal memory. Both 1-point and 2-point adjustments can thus be carried out on another testo 6681 (e.g. in the calibration laboratory).
1.3.3.1 Overview: Adjustment keys and test contacts

1 Status LED
2 Contact ch. 1 +
3 Contact ch. 1 -
4 Adjust key 11.3 %
5 Service interface
6 Adjust key 75.3 %
7 Contact ch. 2 +
8 Contact ch. 2 -

1.3.3.2 1-point adjustment (offset)

In the 1-point adjustment, the reading at the working point is raised to the reference value so that there is no longer any deviation in the working point. The reference condition can be measured using a precise handheld instrument or be created in an air conditioning cabinet.

The advantage of the 1-point adjustment is the good measuring result in the working range. But the further away the measurement is from the working point, the greater the deviation can become. The 1-point adjustment should therefore only be used for a relatively narrow measuring range (working range), e.g. clean room applications, air conditioning applications for storage and similar.
The 1-point adjustment can be performed

- via the user menu (see chapter 1.4.6.9) or
- via the P2A software (see volume 2, chapter 3).

Please note that the 1-point adjustment is generally performed on the basis of the % RH and °C/°F parameters.

1.3.3.3 2-point adjustment

With the 2-point adjustment, the parameter is adjusted to the reference value at the two standard adjustment points 11.3 % RH and 75.3 % RH or 20 % RH and 80 % RH. The reference conditions are created either by using Testo humidity adjustment set (order no. 0554 0660, only for adjustment points 11.3 %RH and 75.3 %RH) or in the humidity generator.

In the 2-point adjustment, the deviations between the reading and the nominal value are minimized across the entire measuring range. The 2-point adjustment is therefore recommended for large working ranges, e.g. in drying processes.
The 2-point adjustment can be performed for the adjustment points 11.3 %RH and 75.3 %RH

- via P2A software (see volume 2, chapter 3) or
- using the adjustment keys under the service flap, see description of how to proceed below.

The 2-point adjustment for the adjustment points 20 %RH and 80 %RH is carried out via the user menu.

A 2-point adjustment cancels any previous 1-point adjustment.

Adjustment with the standard Testo adjustment salt pots is not suitable for the testo 6614 (heated for high-humidity applications) and testo 6615 (trace humidity) probes. The reference conditions should be generated in a humidity generator to adjust these probes.

In addition, these probes can also be adjusted at a third adjustment point by Testo Service.

- testo 6614: third adjustment point at 90 % RH
- testo 6615: third adjustment point at -40 °Ctd/-40 °Ftd
Adjusting testo 6681 using adjustment keys

The 2-point adjustment for the adjustment points 20 %RH and 80 %RH is carried out via the user menu.

1. Expose the humidity probe of the testo 6681 to the reference condition of 11.3 % RH for at least 1.5 hours at 25 °C.

Yes, the service flap of the testo 6681 is open.

Options:
- 11.3 % RH (salt pots)
- 75.3 % RH
- 11.3 % RH (humidity generator)
- 75.3 % RH
2 After this equalization period, press the 11.3 % adjustment key (4) for at least 10 seconds with something like a ball-point pen that is not too sharp. The LED (1) flashes when the adjustment process begins. At the same time, the **2-point adjustment 11.3 %** status message appears on the display.

Completion of the adjustment is signalled by the LED (1) coming on permanently and the **Probe reset** status message is shown.

Carry out the adjustment analogously for the reference condition 75.3 % RH. Press on the 75.3 % RH adjustment key (6) to do this.

3 Close the service flap.

1.3.3.4 Analog output adjustment

The purpose of adjusting the analog outputs is to adjust the signal chain from the digital signal (within the transmitter) to the analog outputs. The signal type that was appointed for the transmitter is adjusted respectively for each channel (e.g. 4 to 20 mA or 0 to 1 V, etc.).
Analog outputs 1 and 2 adjusted

✓ A precise multimeter (minimum resolution of 6.5 digits, accuracy of 100 µA, e.g. Agilent 34401A) is available.

If only a simple multimeter is available, the analog outputs may not be adjusted.

✓ The service flap is open.

1 Connect the inputs of the multimeter with the contacts (2) and (3) for channel 1 or with contacts (7) and (8) for channel 2.

2 Transfer the reference analog value measured with the multimeter to the P2A software (see volume 2, chapter 3) or enter it via the user menu (see chapter 1.4.6.9).

3 Disconnect connections between multimeter and contacts of the testo 6681 and close service flap.

Adjusting analog output 3 (optional)

If the optional third analog output is to be adjusted, a cable connection to measure the analog value must be installed. Do this by proceeding as follows:

1 Open transmitter (see chapter 1.3.2).
2 Connect measuring cable to the terminals of the third analog output and guide through the cable coupling and out of the transmitter.
3 Reassemble upper part of transmitter (see chapter 1.3.2.6).
4 Connect cable ends to the inputs of the multimeter.
5 Transfer the reference analog value measured with the multimeter to the P2A software (see volume 2, chapter 3) or enter it via the user menu (see chapter 1.4.6.9).
6 Remove the upper part of the transmitter, detach the cable connections for the adjustment of the 3rd analog output and reassemble the transmitter.
1.3.3.5 High-humidity adjustment for testo 6614

With the testo 6614, the rear of the Testo humidity sensor is heated, creating a microclimate around the sensor (within the filter) that is constantly 5 K warmer than the actual process conditions. As can be seen in the Mollier diagram, this reduces the relative humidity at the sensor from around 100 % RH to a lower value, e.g. 73 % RH. In this range, the reaction time of the sensor is noticeably shorter than in the condensation range and the risk of the sensor corroding is also reduced. Using the separate temperature probe, the testo 6681 transmitter compensates the microclimate conditions and displays the process readings.

The reference conditions (11.3 % RH and 75.3 % RH) for the 2-point adjustment of the testo 6614 should be generated in a humidity generator, as humidity adjustment sets cannot be used due to the heat generated. The adjustment can also be carried out at a third adjustment point (90 % RH) by Testo Service so that optimum accuracy is also achieved in the high humidity ranges.
1.3.3.6 Self adjustment of testo 6615 trace humidity probe

Conventional trace humidity probes show a steep rise in measuring uncertainty at low humidities. In the testo 6615 trace humidity probe, these measuring uncertainties are corrected by means of an automatic self-adjustment process. This means that extremely accurate measuring results are also attained to -60 °Ctd.

To this end, a temperature sensor is fitted on the back of the testo 6615 which is used as a heater. A humidity and temperature value pair is taken in both the unheated and heated state. The deviation of the probe obtained from these pairs of values is automatically corrected.

The graph shows the effect of the self-adjustment, e.g. during the Init. phase.

1. Self-adjustment
2. Correction of measurement value
3. Process dew point temperature
For the effectiveness of the self-adjustment the following prerequisites are decisive over the duration of the self-adjustment.

- The process temperature should not vary by more than 0.5K
- The dew point temperature should remain stable, as far as possible
- The process pressure should not vary excessively

If these prerequisites cannot be fulfilled, the values obtained during the last successful self-adjustment will be maintained.

All adjustment processes are saved in the history of the transmitter, see Chapter 3.3.5 Transmitter history.
Important:

- Deactivating the adjustment function of the testo 6615 will reduce measuring accuracy and should therefore be restricted to the shortest possible length of time.

- During the heating phase, the relay and analog outputs, the display value and output value are "frozen", see diagram above. **Self-adjustment active** is shown in the display until it has finished. The factory setting for the Self-adjustment time (incl. heating time, calculation time, cooling time) is 30 minutes per day. The cycle time can be edited via the operating menu or the P2A software.

- In the factory setting, a **third adjustment point** (-40 °Ctd) is approached for the testo 6615 in addition to the 2-point adjustment. This special adjustment can be performed again by your Testo Service team if necessary.

1.4 Operation

1.4.1 Relationship between user menu and mini-DIN socket is active

The testo 6681 can be parameterized using either the user menu or the P2A software (see *volume 2, chapter 3*).

The testo 6681 humidity transmitter can only be operated via the display and keypad if the display option is available.

If the testo 6681 is connected to the P2A software, the user menu is blocked for the duration of the communication. The message **Service plug** is shown in the display of the testo 6681. As soon as the P2A software is disconnected, the user menu is accessible again.
1.4.2 Key cover

To prevent unauthorized operation of the keys, the standard key frame can be replaced with a key cover (see below).

If the key cover has been assembled, the service flap must be opened for operation, see Section *Opening the instrument*, chapter 1.3.2.

- **Attaching the key cover**

 ✓ The service flap is open, see *Opening the instrument*, chapter 1.3.2

 1. Undo screws (3) and remove key frame (2).
 2. Insert key cover (1) into service flap and tighten screws (3).
 3. Close and screw down the service flap.
1.4.3 Password protection

The user menu can be protected with a four-digit numerical code (see Editing Main Menu Settings, chapter 1.4.6.5) so that access to the user menu is denied to unauthorized persons not familiar with this numerical code.

If the password protection is not to be used, the numerical code "0000" must be entered. This is also the status upon delivery.

1.4.4 Structure of user menu

At the main menu level, the user menu comprises the following:

- Main menu of channel 1
- Main menu of channel 2
- Main menu of channel 3 (if this option is available)
- Main Menu Alarm
- Editing Settings main menu
- Analysis main menu
- Main Menu Messages
- Ident main menu
- Adjustment main menu
- Reset main menu

Channel 1 display

Channel 2 display

Channel 3 display or for messages
Four keys enable the user to navigate/scroll through the menus and enter/amend values and settings:

<table>
<thead>
<tr>
<th>Key</th>
<th>Function/description</th>
</tr>
</thead>
</table>
| SET | - In Measuring Mode: changes to parameterization
 | - In Parameterizing Mode: confirms a selection or setting |
| ESC | - Leaves a menu (without modifying any settings) |
| ▼ | - Selecting: scrolls through menus (downwards) or selectable alternatives
 | - Editing: changes to next digit (to the right) |
| ▲ | - Selecting: scrolls through menus (upwards) or selectable alternatives
 | - Editing: increases the value of the current digit by 1 |
1.4.5 Overview of the testo 6681 user menu
1.4.6 The individual main menus

1.4.6.1 Editing Main Menu Channel 1

An overview is given in Overview of the testo 6681 user menu, chapter 1.4.5. You can perform basic settings for channel 1.

1. In Measuring Mode, press SET, select Main Menu Channel 1 using ► or ▲ and confirm selection with SET.

One of the following parameters can now be selected using ► or ▲, after which the selection must be confirmed with SET:

- **Channel 1 unit**
 The parameter for this channel is selected.
 Selection: % RH, °C, °F, °Ctd, °Ftd, g/m³, gr/ft³, g/kg, gr/lb, kJ/kg, BTU/lb, °Ctw, °Ftw, °H2O, hPa, ppmvol, % Vol, °Ctm, °Ftm.
 Edit/select parameter with ► or ▲, confirm with SET or abort input with ESC.

- **Scale minimum for channel 1**
 The lower scale limit is edited;
 Unit as selected above (example: 4 mA = 0 % RH).
 Editing the value: Scroll one digit to the right using ►, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

- **Scale maximum for channel 1**
 The upper scale limit is edited;
 Unit as selected above (example: 20 mA = 100 % RH).
 Editing the value: Scroll one digit to the right using ►, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

- **Signal delay ("Damping") for channel 1**
 The analog signal can be delayed("Damping"); a time constant is selected for this (1 = no delay; 15 = longest delay).
 Edit/select parameter using ► or ▲, confirm with SET or cancel entry via ESC.

2. Continue to Main Menu Channel 2 using ► or ▲ or return to Measuring Mode by pressing ESC.

1.4.6.2 Editing main menu of channel 2

See channel 1.

1.4.6.3 Editing main menu of channel 3 (if this option is available)

See channel 1.
1.4.6.4 Editing Main Menu Alarm

With the alarm, the relays, available as options, are programmed. In addition, the alarm statuses are shown on the display (top right) (even without relays). You can choose whether the alarm is to be used to monitor limit values or as a collective alarm. If an alarm is to be used to monitor limit values, you can choose between monitoring the minimum or maximum value and set a limit value and hysteresis for each alarm.

1. In Measuring Mode, press SET, select **Main Menu Alarm** using ▶ or ▲ and confirm selection with SET. Four alarms can be parameterized.

2. Select **Alarm x** using ▶ or ▲ and confirm selection with SET.

- **Using alarm to monitor limit values**

3. Select **Channel x** (e.g. "Channel 1") using ▶ or ▲ and confirm selection with SET.

4. Select **Max control** or **Min control** with ▶ or ▲ (see graphic).

5. Press SET and edit **limit value** and **hysteresis**: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.
6. Return to **Channel x** by pressing ESC.
7. Return to **Alarm x** by pressing ESC.
8. Change to the other relays using ▶ or ▲ and perform settings in the same way.

- **Using alarm as collective alarm or not using it at all**

If the collective alarm is assigned to an alarm, the relay is switched as soon as (at least) one of the warning or error messages of the testo 6681 transmitter (or the connected testo 6610 probe) is activated.

 ![Note]

 The messages affecting the collective alarm can only be selected in the P2A software, see *volume 2, chapter 3*.

 ✓ Alarm is selected (see previous steps 1 and 2).
1. Specify with ▶ or ▲ whether **Alarm x** is to be used as the **Alarm relay** or is **not to be used**. Confirm selection with SET and return to **Alarm x**.
2. Change to another alarm using ▶ or ▲ and perform settings in the same way.
3. Continue to **Main Menu Settings** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

1.4.6.5 Editing Main Menu Settings

You can edit instrument settings and other settings.

- In Measuring Mode, press SET, select **Main Menu Settings** using ▶ or ▲ and confirm selection with SET.

 You can edit settings for:

 - Display
 - Language
 - H₂O₂ proportion by weight entry (optional with 3rd analog output)
 Unit: %
 - Absolute pressure unit
 Selection: bar, psi, mPa, hPa
 - Absolute pressure
 Unit as selected above.
 - Code
Editing display settings

You can set the brightness and contrast of the display.

1. Select **Display Settings** using ▶ or ▲ and confirm selection with SET.
2. Select **Backlight** or **Contrast** using ▶ or ▲ and confirm selection with SET.

One of the following parameters can now be selected using ▶ or ▲, after which the selection must be confirmed with SET:

- **Backlight**
 The display illumination is changed.
 Edit/select parameter with ▶ or ▲, confirm with SET or abort input with ESC (the effect of the change in parameter can be seen during input).

- **Contrast**
 The brightness difference between the display background and the displayed values is changed.
 Edit/select parameter with ▶ or ▲, confirm with SET or abort input with ESC (the effect of the change in parameter can be seen during input).

- **Backlight on 24 h**
 Using ▶ or ▲ select **On** or **Off** and confirm with SET.
 Off: The display light switches off automatically if no button was pressed for 30 seconds.
 On: The display light is activated

3. Go back to **Display Settings** by pressing ESC and continue to **Language** using ▶ or ▲.

Selecting language

You can select the language for the plain text line in the display.

- Press SET, select required language with ▶ or ▲, confirm selection with SET and return to **Language**.

 Only choose a language that you can understand well.
Editing H$_2$O$_2$ proportion by weight (optional with 3rd analog output)

This menu is only used to parameterize humidity measurements in H$_2$O$_2$ atmospheres (e.g. in sterilization processes) and determines whether °Ctm, °Ftm or %rFm is the output parameter.

1. Select H$_2$O$_2$ Weight Proportion using ▶ or ▲ and confirm selection with SET.

 The selection H$_2$O$_2$ passively vaporized or H$_2$O$_2$ actively vaporized in the submenu describes whether H$_2$O$_2$ is created through evaporation or is actively evaporated in the process.

2. Select H$_2$O$_2$ passively vaporized or H$_2$O$_2$ actively vaporized using ▶ or ▲ and confirm with SET.

3. Editing proportion by weight of H$_2$O$_2$ in % (% H$_2$O$_2$ proportion by weight in the liquid end solution): Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

4. Go back to H$_2$O$_2$ by pressing ESC and continue to Absolute pressure unit using ▶ or ▲.

Selecting absolute pressure unit (Abs. pressure unit)

This parameter determines the humidity variables, standardised atmospheric dewpoint (°CtA, °FtA), relative humidity (g/kg or gr/lb) and water content (ppm$_{vol}$ or % vol).

1. Press SET, select desired unit (selection: bar, psi, mPa, hPa) using ▶ or ▲ confirm selection with SET or cancel with ESC.

2. Continue to Absolute Pressure with ▶ or ▲.

Editing absolute pressure(Abs. pressure value)

You can set a value for the process absolute pressure.

1. Using ▶ or ▲, select Abs. pressure value and confirm selection with SET.

 The absolute pressure is displayed.

2. Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.
3 Press SET and return to **Abs. pressure value**
4 Return to **Main Menu Settings** by pressing ESC.
5 Continue to **Main Menu Analysis** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

> **Editing code settings**

You can set the access code (password).

![Info icon]

If a code other than "0000" (factory setting) is set, the transmitter can only be operated once this code has been entered via the menu.

1 Select **Code** using ▶ or ▲ and confirm selection with SET.
2 Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.
3 Return to **Code** by pressing ESC.

1.4.6.6 Editing Analysis main menu

You can test the functionality of analog and relay outputs. In addition, you can read off the minimum and maximum readings (since the last voltage supply or reset of the min./max. values).

> **Testing functionality of analog outputs**

![Info icon]

This function affects the analog outputs directly, not only the test contacts.

1 In Measuring Mode, press SET, select **Main Menu Analysis** using ▶ or ▲ and confirm selection with SET.

Test Analog Output is shown.

2 Press SET, choose between **Analog Output 1, 2, 3** with ▶ or ▲.
3 Press SET, scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Any analog output value can be predefined, e.g. for an analog output of 4 to 20 mA, the value "6.0 mA". Confirm with SET or abort entry with ESC.
4 Accept setting by pressing SET and test with multimeter (minimum requirement: resolution of 6.5 digits, accuracy of 100 nA):

Analog output 1 or 2: via test contacts under service flap, see diagram.
Analog output 3: Connect measuring cables to terminals for channel 3, guide measuring cables out of housing and perform measurement outside of the transmitter, see diagram.

5 Return to **Test Analog Output** using ESC and continue to **Test Relay Output** using ▶ or ▲.

➢ **Testing functionality of relay outputs**

1 Press SET, choose between **Alarm 1, 2, 3, 4** with ▶ or ▲.

2 Press SET.

The relay can now be tested. You can choose between **OFF** and **ON** using ▶ or ▲. If **ON** is chosen, the NO contact is closed, the NC contact opened. If **OFF** is chosen, the NC contact is closed, the NO contact opened.

3 To test, route a measuring cable from the relay terminals (see chapter 1.3.2.3) out of the transmitter to a multimeter (resistance measurement) or continuity tester.

4 Go back to **Test Relay Output** by pressing either SET (starts relay test) or ESC (exits the menu without relay test).

➢ **Reading off min./max. values of channels**

 To reset the max./min. values, see chapter 1.4.6.10, *Editing Reset main menu.*

1 Read off the min./max. values of the three channels by pressing ▶ or ▲ one after the other and return to **Main Menu Analysis** using ESC.

2 Continue to **Main Menu Message** using ▶ or ▲ or return to Measuring Mode by pressing ESC.
1.4.6.7 Editing Message main menu

Messages can be confirmed/acknowledged, the last messages can be called up and the display of the messages can be switched on or off.

Using the P2A software (see volume 2, chapter 3) you can predefine which of the messages are to be shown in the display.

1. In Measuring Mode, press SET, select Main Menu Message using ▶ or ▲ and confirm selection with SET.
2. Confirm Confirm message using SET.
3. Select Last messages using ▶ or ▲ and confirm with SET.
4. Scroll between the messages recorded so far using ▶ or ▲ and press ESC to return to Last messages.
5. Continue to Display of message with ▶ or ▲.
 ON: Measurements are shown on the display in Measuring Mode.
 OFF: No messages shown on display.
6. Select ON or OFF using ▶ or ▲ and confirm selection with SET.
7. Return to Main Menu Message by pressing ESC.
8. Continue to Main Menu Ident using ▶ or ▲ or return to Measuring Mode by pressing ESC.

An overview of the messages can be found in Chapter 1.5 Status, warning and error messages.
1.4.6.8 Calling up Main Menu Ident

The serial numbers of the transmitter and probe can be read off.

1. In Measuring Mode, press SET, select **Main Menu Ident** using ▶ or ▲ and confirm selection with SET.
 The type, firmware version and serial number of the transmitter are displayed.

2. Press ESC to return to the **Main Menu Ident** or read off the type, firmware version and serial number of the probe using ▶ or ▲ and then press ▶ or ▲ to return to the **Main Menu Ident**.

3. Continue to **Main Menu Adjust** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

1.4.6.9 Editing Adjust main menu

A reference value can be entered for both relative humidity (RH) and temperature (°C/°F) for the 1-point adjustment. Please refer to the description in chapter 1.3.3.2.

In addition, the analog outputs can be adjusted. See chapter 1.3.3.4 for instructions on how to do this.

The 2-point adjustment for the adjustment points 20 %RH and 80 %RH is carried out via the user menu.
For the adjustment points 11.3 %RH and 75.3 %RH, the 2-point adjustment is carried out via the adjustment buttons or the P2A software, see chapter 1.3.3.3 or volume 2, chapter 3.
Enter reference value for 1-point adjustment

Please also refer to chapter 1.3.3.2.

1. In Measuring Mode, press SET, select **Main Menu Adjust** using ▶ or ▲ and confirm selection with SET.

 Reference value % RH is displayed.

2. Press SET, edit value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or cancel entry with ESC.

3. Continue to **Reference value temp** with ▶ or ▲.

4. Press SET and **Reference value °C** is displayed.

5. Press SET, edit value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

6. Continue to **Reference value °F** with ▶ or ▲.

7. Press SET, edit value: Scroll one digit to the right using ▶, increase value of digit by 1 using ▲. Confirm with SET or abort entry with ESC.

8. Continue to **Analog Adj. Ch. 1** with ▶ or ▲.

9. Continue with the adjustment of the analog outputs (see below, step 2) or press ESC to return to **Main Menu Adjustment**.

10. Continue to **Main Menu Reset** using ▶ or ▲ or return to Measuring Mode by pressing ESC.

Performing the 2-Points-Adjustment for 20% RH and 80% RH

1. In the Measuring Mode press SET, select main menu Adjust with ▶ or ▲ and confirm selection with SET.

2. Continue to 2Pt Adjust 20/80% with ▶ or ▲.

3. Press SET.

4. Continue to Adj. Point 20% or Adj. Point 80% with ▶ or ▲.

5. Confirm selection with SET.

 The red LED ADJ flashes

 In the display 2Pt Adjust 20/80%, 1-point adjustment, Probe reset appears consecutively.

 The adjusted measurement values appear after probe reset.
Performing analog adjustment

Please refer to chapter 1.3.3.4.

1 In Measuring Mode, press SET, select Main Menu Adjust using ▲ or ▼ and confirm selection with SET.

Each channel is adjusted at three points in the analog range (at 10%; 50%; 90% of the analog scale).

2 Select Analog Adj. Ch. 1 using ▲ or ▼ and confirm with SET.
3 Select Adj. Point 1 using ▲ or ▼.
4 Press SET. Read off multimeter display (e.g. 5.601 mA) and enter this value in the user menu. Do this by scrolling one digit to the right using ▲ and increasing the value of digit by 1 using ▼. Confirm with SET or abort entry with ESC.
5 Select Adj. Point 2 using ▲ or ▼.
6 Press SET. Read off multimeter display (e.g. 12,001 mA) and enter this value in the user menu. Do this by scrolling one digit to the right using ▲ and increasing the value of digit by 1 using ▼. Confirm with SET or abort entry with ESC.
7 Select Adj. Point 3 using ▲ or ▼.
8 Press SET. Read off multimeter display (e.g. 18,401 mA) and enter this value in the user menu. Do this by scrolling one digit to the right using ▲ and increasing the value of digit by 1 using ▼. Confirm with SET or abort entry with ESC.
9 Continue to Analog Adj. Ch. 2 or 3 with ▲ or ▼ (repeat steps 3 to 8).
10 Return to Main Menu Adjust by pressing ESC.
11 Continue to Main Menu Reset using ▲ or ▼ or return to Measuring Mode by pressing ESC.
1.4.6.10 Editing Reset main menu

You can reset the factory settings for the following:

- Instrument
- Sensor/probe
- Min./max. values

Resetting to the factory settings means resetting to the order specification, i.e. the specific condition at the time of supply to the customer.

1. In Measuring Mode, press SET, select **Main Menu Reset** using ▶ or ▲ and confirm selection with SET. **Reset device** to factory settings is displayed.

2. Select the setting to be reset using ▶ or ▲ and confirm selection with SET.

 Reset Completed is displayed.

3. Press ESC or SET to return to reset setting and press ESC to return to **Main Menu Reset**.

4. Continue to **Main Menu Channel 1** using ▶ or ▲ or return to Measuring Mode by pressing ESC.
1.5 Status, warning and error messages

To achieve optimum operational reliability (machine availability), the transmitter provides the following via the user menu (see Volume 2, chapter 1.4) or the P2A software (see volume 2, chapter 3):

- Status messages,
- Warning messages and
- Error messages

for either the testo 6681 or the connected testo 661x probe as applicable.

All messages are stored in the transmitter with an operating hours stamp. Use the user menu (see chapter 1.4.6.7, page 54) or P2A software (see volume 2, chapter 3, page 111) to view the message history.

In the transmitter, the last 180 messages are stored in a ring memory, but there is no restriction in the P2A software.

1.5.1 Status messages

Status messages show the current operating mode of the testo 6681.

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>00300</td>
<td>New limit value</td>
<td>The limit value has been changed or shifted</td>
</tr>
<tr>
<td>00301</td>
<td>Scaling changed</td>
<td>The scaling has been changed</td>
</tr>
<tr>
<td>00500</td>
<td>Transmitter reset:</td>
<td>The transmitter is reset to the factory settings and is restarted.</td>
</tr>
<tr>
<td>0052F</td>
<td>Reset Min/Max</td>
<td>Resets all saved Min/Max values for all channels</td>
</tr>
<tr>
<td>02506</td>
<td>Probe connection</td>
<td>A probe has been connected</td>
</tr>
<tr>
<td>01D19</td>
<td>Service plug</td>
<td>The Mini-DIN socket is connected to: the USB adapter for P2A software, the adjustment adapter or the service plug (is not recorded/no number)</td>
</tr>
<tr>
<td>00307</td>
<td>User Setting Change</td>
<td>User Setting Change: General settings were changed for the transmitter.</td>
</tr>
</tbody>
</table>
Status, warning and error messages

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>02d07</td>
<td>Probe disconnected</td>
<td>No probe is connected</td>
</tr>
<tr>
<td>02104</td>
<td>Analog out adjust</td>
<td>An analog adjustment has been made</td>
</tr>
<tr>
<td>02101</td>
<td>1-point adjustment</td>
<td>A 1-point adjustment is performed.</td>
</tr>
<tr>
<td>02102</td>
<td>2-point adjustment 11,3%</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 11.3 % RH</td>
</tr>
<tr>
<td>02103</td>
<td>2-point adjustment 75.3%</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 75.3 % RH</td>
</tr>
<tr>
<td>02120</td>
<td>2-point adjustment 20 %</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 20 % RH</td>
</tr>
<tr>
<td>02130</td>
<td>2-point adjustment 80 %</td>
<td>As part of the 2-point adjustment, an adjustment is performed at 80 % RH</td>
</tr>
<tr>
<td>02105</td>
<td>Self-adjustment active</td>
<td>For testo 6615 probe only: The probe performs an automatic self-adjustment</td>
</tr>
<tr>
<td>02518</td>
<td>Probe reset</td>
<td>Probe reset: The probe performs a reset</td>
</tr>
</tbody>
</table>

1.5.2 Warning messages

Warning messages show an early warning or a current malfunction which may negatively impact measuring.

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Cause</th>
<th>Remedying of fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>02101</td>
<td>2-point adjustment drift*</td>
<td>In the 2-point adjustment, corrections repeatedly occur in the same direction; this may indicate a sensor drift</td>
<td>Send the probe into Testo Service</td>
</tr>
<tr>
<td>00E00</td>
<td>T ambient high**</td>
<td>The ambient temperature exceeds the permissible temperature for the transmitter</td>
<td>Take necessary measures to lower ambient temperature, e.g. through venting or cooling</td>
</tr>
<tr>
<td>00E01</td>
<td>T ambient low**</td>
<td>The ambient temperature is below the permissible temperature for the transmitter</td>
<td>Take necessary measures to raise ambient temperature, e.g. through heating</td>
</tr>
<tr>
<td>00E02</td>
<td>Supply voltage low**</td>
<td>The supply voltage is below the minimum voltage required for the transmitter</td>
<td>Ensure sufficient voltage supply</td>
</tr>
<tr>
<td>Message</td>
<td>Display</td>
<td>Cause</td>
<td>Remedy of fault</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>00E00</td>
<td>T process high**</td>
<td>The process temperature exceeds the temperature designated for the probe</td>
<td>Remove the probe from the process and take any necessary measures to lower the process temperature</td>
</tr>
<tr>
<td>02806</td>
<td>Condensation*</td>
<td>100 % RH has been reached, condensation developing</td>
<td>Take measures to reduce process humidity</td>
</tr>
<tr>
<td>02807</td>
<td>Values less than 0 % RH**</td>
<td>The adjustment or sensor is faulty</td>
<td>Check adjustment (via P2A adjustment history, perform 2-point adjustment where necessary) If the problem persists, contact Testo Service</td>
</tr>
<tr>
<td>02809</td>
<td>Sensor early warning*</td>
<td>For testo 6617 probe only: The cover electrode of the sensor is damaged; this may soon cause the sensor to break</td>
<td>Carry out visual inspection If the mirror-like surface of the sensor is dirty or damaged, contact Testo Service</td>
</tr>
</tbody>
</table>

* Early warning
** Current malfunction
1.5.3 Error messages

Error messages show a current malfunction.

<table>
<thead>
<tr>
<th>Message</th>
<th>Display</th>
<th>Cause</th>
<th>Remedy of fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>03401</td>
<td>No probe signal</td>
<td>The probe communication is interrupted</td>
<td>Ensure that the probe connector is fully engaged in the transmitter. If communication still cannot be established, contact Testo Service</td>
</tr>
<tr>
<td>03508</td>
<td>Wrong probe</td>
<td>The connected probe is not compatible with the present transmitter</td>
<td>Use a compatible probe Note: The 660x probes match the 665x transmitter, and the 661x probes the 668x transmitter</td>
</tr>
<tr>
<td>01528</td>
<td>Watchdog error</td>
<td>Due to a processor error, the transmitter performs an automatic restart</td>
<td>If the problem occurs frequently, contact Testo Service</td>
</tr>
<tr>
<td>0300A</td>
<td>% RH sensor short-circuit</td>
<td>Short-circuit in humidity sensor</td>
<td>Contact Testo Service</td>
</tr>
<tr>
<td>0300B</td>
<td>%RH sensor broken</td>
<td>The humidity sensor is damaged (sensor broken)</td>
<td>Contact Testo Service</td>
</tr>
<tr>
<td>0300C</td>
<td>T sensor short-circuit</td>
<td>Short-circuit in temperature sensor</td>
<td>Contact Testo Service</td>
</tr>
<tr>
<td>0300D</td>
<td>T sensor broken</td>
<td>The temperature sensor is damaged (sensor broken)</td>
<td>Contact Testo Service</td>
</tr>
<tr>
<td>03105</td>
<td>Self-adjustment error</td>
<td>For testo 6615 probe only: The automatic self-adjustment was faulty</td>
<td>Contact Testo Service</td>
</tr>
</tbody>
</table>
1.5.4 Handling alarm messages

<table>
<thead>
<tr>
<th>Shown on the display ¹</th>
<th>Can be used for collective alarm ²</th>
<th>Additional Message start/end</th>
</tr>
</thead>
<tbody>
<tr>
<td>New limit value</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Scaling changed</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Transmitter reset</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Reset Min/Max</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Transmitter refresh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Probe connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service plug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>User Setting Change</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Probe disconnected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analog out adjust</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>1-point adjustment</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2-point adjustment 11,3%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2-point adjustment 75.3%</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Probe self-adjustment</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Probe reset</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2-point adjustment drift*</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T ambient high**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T ambient low**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Supply voltage low**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T process high**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Condensation*</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Values less than 0 % RH**</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Sensor early warning*</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>No probe signal</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Wrong probe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Watchdog error</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Shown on the display ¹</td>
<td>Can be used for collective alarm ²</td>
<td>Additional Message start/end</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>% RH short-circuit</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>%RH sensor broken</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T short-circuit</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>T sensor broken</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Self-adjustment error</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* If multiple messages/alarms are activated at the same time, only the last message/alarm is shown. If this is cancelled, the other messages that are still active are no longer displayed.

** The message can be assigned the collective alarm function, which means that the collective alarm is activated as soon as at least one of the messages assigned to it is activated. The collective alarm can be assigned to each of the 4 optional relays. The collective alarm is then always the same, as it can only be defined once.

Execute **Confirm message** function (via control keys at transmitter):

- The message/alarm is no longer shown on the display. If multiple messages/alarms are active at the same time, all are reset simultaneously.
- If at least one message is assigned to the collective alarm, the collective alarm is reset. If the collective alarm is set on a relay, the relay is also reset, meaning switched to its neutral position.
1.5.5 Namur fault conditions

If the faults named in the following table occur, the analog outputs output special values that enable a general fault warning in the higher-level control system. The values correspond to the "Namur" industry standard.

<table>
<thead>
<tr>
<th>Display message</th>
<th>Class</th>
<th>0-20mA</th>
<th>4-20mA</th>
<th>1V</th>
<th>5V</th>
<th>10V</th>
</tr>
</thead>
<tbody>
<tr>
<td>No probe signal</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Wrong probe</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Watchdog error</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Values < 0 % RH</td>
<td>Underrange</td>
<td>0mA</td>
<td>3.8mA</td>
<td>0V</td>
<td>0V</td>
<td>0V</td>
</tr>
<tr>
<td>Condensation</td>
<td>Overrange</td>
<td>20.5mA</td>
<td>20.5mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>%RH short-circuit</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>%RH sensor broken</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>T short-circuit</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>T sensor broken</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
<tr>
<td>Probe disconnected</td>
<td>Error</td>
<td>21mA</td>
<td>21mA</td>
<td>1.2V</td>
<td>5.5V</td>
<td>11V</td>
</tr>
</tbody>
</table>
1.6 Maintenance and cleaning

1.6.1 Maintaining the instrument

We recommend that the adjustment and settings of the transmitter be checked at regular intervals using the

- User menu (chapter 1.4) or
- P2A software (volume 2, chapter 3)

Convenient "remote monitoring" of the transmitter can be implemented, for example by using a relay as a collective alarm (see chapter 1.4.6.4) whose messages are forwarded to a local alarm transmitter (horn, light) or PLC.

1.6.2 Cleaning the instrument

- Only clean the instrument carefully with a moist cloth.
- Do not use aggressive cleaning agents.
- Do not use any solvents.
- Do not touch or damage the sensor.
Testo SE & Co. KGaA
Celsiusstr. 2
79822 Titisee-Neustadt
Germany
Tel.: +49 7653 681-0
E-Mail: info@testo.de
www.testo.com
Contents

2 TESTO 6610 PROBES

2.1 Specifications ... 73
 2.1.1 Functions and use .. 73
 2.1.2 Design of the probe ... 75
 2.1.3 Accessories ... 76

2.2 Product description .. 76
 2.2.1 Overview of probe and filter types ... 76
 2.2.2 testo 6611 wall probe .. 81
 2.2.3 testo 6612 duct probe ... 84
 2.2.4 testo 6613 cable probe ... 88
 2.2.5 testo 6614 heated cable probe ... 92
 2.2.6 testo 6615 trace humidity cable probe (self-adjustment) .. 95
 2.2.7 testo 6617 cable probe (self-monitoring) .. 99

2.3 Commissioning ... 103
 2.3.1 Installing the probe ... 103
 2.3.2 Connecting/removing the probe to/from the transmitter ... 107

2.4 Maintenance and cleaning .. 107
 2.4.1 Replacing filters/protection caps ... 107
 2.4.2 Cleaning the instrument and filter/protection cap ... 110
 2.4.3 Replacing the sensor .. 110

3 PARAMETERIZING, ADJUSTING AND ANALYZING SOFTWARE (P2A SOFTWARE)

3.1 Specifications ... 111
 3.1.1 Functions and use ... 111
 3.1.2 System requirements ... 112
 3.1.3 Scope of delivery ... 113

3.2 First steps .. 113
 3.2.1 Installing the software/driver ... 113
 3.2.2 Starting the software .. 114

3.3 Using the software ... 115
 3.3.1 User interface ... 115
 3.3.2 Editing instrument/parameter file ... 117
 3.3.3 Analyzing/testing the transmitter ... 127
 3.3.4 Adjusting the transmitter ... 133
 3.3.5 Transmitter history ... 138
4 TIPS AND ASSISTANCE .. 144

4.1 Questions and answers ... 144

4.2 Accessories and spare parts .. 145
 4.2.1 Ordering options for testo 6681 transmitter (0555 6681) 148
 4.2.2 Ordering options for testo 6610 probes (0555 6610) 152
2 testo 6610 probes

2.1 Specifications

2.1.1 Functions and use

The plug-in, adjusted probes from the testo 6610 range are used in conjunction with the testo 6681 humidity transmitter.

These measuring units are suitable for the following applications, for example:

- Process instrumentation
- Clean rooms
- Test benches
- Drying processes
- Production and storage air quality
- Complex room climate applications.

2.1.1.1 Digital probes:

The probes are adjusted in the factory and transmit their adjustment data to the internal memory of the testo 6681 transmitter. The information is transmitted between the probe and transmitter in a purely digital form. The probes can therefore be disconnected from the transmitter for adjustment or servicing while the transmitter itself can remain at the measuring point.

Hint:

We recommend in this case that a probe of the same type be inserted into the transmitter immediately in order to be able to continue measuring with minimal interruption.

The transmitter identifies the probe and records that a probe was connected in the history.

The testo 6681 transmitter cannot be run with the testo 6600 probes; testo 6610 probes must be used.
2.1.1.2 The Testo humidity sensor

With the Testo humidity sensor, which has been in successful use and continually improved for more than twenty years, the focus has from the very beginning been on both accuracy parameters, namely measuring uncertainty and long-term stability.

The capacitive humidity sensor is in principle a plate capacitor consisting of two electrically conductive plates (electrodes (1) and (2), see diagram below) opposite each other.

A humidity-sensitive polymer (5) serves as the dielectric. The special feature lies in the perfect way the individual layers are matched to each other. This is evident particularly in the top electrode, which has to perform two tasks that, at first glance, appear contradictory: it must be completely permeable to the water vapour that is to be fed into the polymer dielectric, but at the same time it must be impervious, smooth and repellent to condensate, oil and dirt in order to protect the sensor.

The humidity sensor cannot be exchanged by the customer. The humidity sensor may not be damaged or touched. Contamination and damage lead to an impairment of the measurement and the measuring accuracy.

1 Cover electrode
2 Bottom electrode
3 Substrate
 (Ceramic substrate for mechanical protection)
4 Connections
 (protected against corrosion)
5 Dielectric layer
2.1.1.3 Self-diagnosis
The probes in the testo 6610 range monitor their functionality themselves and report the following faults:

- Sensor breaks
- Sensor short-circuit
- Condensation
 The condensation message is issued at a reading of 100 % RH and deactivated once the readings are within the valid range.
- Error message with drift at the adjustment points
- Value for relative humidity less than 0 % RH.
 The trigger threshold is set at -2 % RH. This means that an error message is only issued once a clear effect is discernible.
- Early warning when sensor corrosion is starting to develop
 The testo 6617 probe is able to signal the first signs of corrosion. The probe can thus be changed at an early stage without interrupting the machine availability.

- Self-adjustment (testo 6615 only)
- Excess temperature
 Error message if permissible process temperature is exceeded

2.1.2 Design of the probe
The probes of the testo 6610 range are made up of the following components (included in delivery):

- Probe connector
- Probe shaft with protection cap and sensors (% RH and °C or °F)
- Mounting bracket (for testo 6612 duct version)
- Probe cable (testo 6612 to 6617, duct and cable version), bend radius minimum Ø 50 mm
2.1.3 Accessories

The following accessories are available for probes in the testo 6610 range:

- Filters and protection caps (see chapter 2.2.1.4).
- Calibration certificates according to ISO and DAkkS (see chapter 4.2, Accessories and spare parts).

2.2 Product description

2.2.1 Overview of probe and filter types

2.2.1.1 Probe version

A detailed description of the probe versions can be found from chapter 2.2.2 onwards.

The following probe versions are available for the testo 6681 humidity transmitter:

<table>
<thead>
<tr>
<th>Version</th>
<th>Article no.</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>testo 6611</td>
<td>0555 6610-L11</td>
<td>Wall probe version; accuracy to ± 1 % RH; temperature range -20 °C to +70 °C/ -4 to +158 °F</td>
</tr>
<tr>
<td>testo 6612</td>
<td>0555 6610-L12</td>
<td>Duct probe version; accuracy to ± 1 % RH; temperature range -30 °C to +150 °C/-22 to +302 °F</td>
</tr>
<tr>
<td>testo 6613</td>
<td>0555 6610-L13</td>
<td>Cable probe version; accuracy to ± 1 % RH; temperature range -70 bis +180 °C/-94...+356 °F</td>
</tr>
<tr>
<td>Version</td>
<td>Article no.</td>
<td>Characteristic</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>testo 6614</td>
<td>0555 6610-L14</td>
<td>Heated cable probe version; accuracy to ± 1 % RH; temperature range -40 °C to +180 °C/ -40 to +356 °F</td>
</tr>
<tr>
<td>testo 6615</td>
<td>0555 6610-L15</td>
<td>Trace humidity cable probe version; dew point to -60 °Ctd; temperature range -40 °C to +120 °C/-40 to +248 °F</td>
</tr>
<tr>
<td>testo 6617</td>
<td>0555 6610-L17</td>
<td>Cable with cover electrode monitoring probe version; accuracy ± 1.2 % RH; temperature range -40 °C to +180 °C/-40 to +356 °F</td>
</tr>
</tbody>
</table>

2.2.1.2 Determining the accuracy/measuring uncertainty

The entries for the measuring uncertainty for the probe are determined in accordance with GUM (Guide to the Expression of Uncertainty in Measurement/DIN V ENV 13005). All parts that make up the measuring uncertainty given by Testo are listed below. When comparing the measuring uncertainty/accuracy between manufacturers, which components are included is to be taken into account. In many cases, not all elements that contribute to measuring uncertainty are assessed, for example if the error contribution of the production adjustment is shown separately or not at all.
The measuring uncertainty of the probe includes the sensor and its electronics as well as the output of the digital measuring signal:

1. **Linearity including scatter**
 Systematic error and scattering of the components (due to manufacturing tolerances)

2. **Hysteresis**
 Hysteresis indicates the maximum deviation of the readings that are obtained when you set the same value for the parameter, once coming from a smaller value, once coming from a larger value (humidity sensors actually have no hysteresis, but rather very slow adjustment effects that appear to be hysteresis when considered only for a short period.)

3. **Reproducibility**
 Repeatability (scattering of the readings in the event of the same parameter being entered successively)

4. **Production adjustment area**
 The measuring uncertainty of the reference instruments of the adjustment area (including the reference instrument) in production

5. **Uncertainty of the testing**
 Uncertainty of the procedure for determining points 1 and 2.
Ordering options for testo 6610 probes (0555 6610)

<table>
<thead>
<tr>
<th>Order code</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lxx Probe type</td>
<td></td>
</tr>
<tr>
<td>L 11</td>
<td>Probe 6611</td>
</tr>
<tr>
<td>L 12</td>
<td>Probe 6612</td>
</tr>
<tr>
<td>L 13</td>
<td>Probe 6613</td>
</tr>
<tr>
<td>L 14</td>
<td>Probe 6614</td>
</tr>
<tr>
<td>L 15</td>
<td>Probe 6615</td>
</tr>
<tr>
<td>L 17</td>
<td>Probe 6617</td>
</tr>
<tr>
<td>Mxx Protective filter</td>
<td></td>
</tr>
<tr>
<td>M 01</td>
<td>Stainless steel sintered filter</td>
</tr>
<tr>
<td>M 02</td>
<td>Metal wire protection cap</td>
</tr>
<tr>
<td>M 03</td>
<td>Sintered PTFE filter</td>
</tr>
<tr>
<td>M 04</td>
<td>Open metal protection cap</td>
</tr>
<tr>
<td>M 05</td>
<td>ABS plastic cap (open)</td>
</tr>
<tr>
<td>M 06</td>
<td>PTFE filter with drip hole</td>
</tr>
<tr>
<td>M 07</td>
<td>PTFE filter with drip hole and condensation protector</td>
</tr>
<tr>
<td>M 08</td>
<td>Filter for H₂O₂ atmospheres</td>
</tr>
<tr>
<td>Nxx Cable length</td>
<td></td>
</tr>
<tr>
<td>N 00</td>
<td>Without cable (testo 6611)</td>
</tr>
<tr>
<td>N 01</td>
<td>1 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>N 02</td>
<td>2 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>N 05</td>
<td>5 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>N 10</td>
<td>10 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>Pxx Probe length</td>
<td></td>
</tr>
<tr>
<td>P 07</td>
<td>Probe length approx. 70 mm (testo 6611)</td>
</tr>
<tr>
<td>P 12</td>
<td>Probe length approx. 120 mm (testo 6613)</td>
</tr>
<tr>
<td>P 20</td>
<td>Probe length approx. 200 mm (testo 6611, 6612, 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>P 30</td>
<td>Probe length approx. 300 mm (testo 6612, 6613, 6614)</td>
</tr>
<tr>
<td>P 50</td>
<td>Probe length approx. 500 mm (testo 6612, 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>P 80</td>
<td>Probe length approx. 800 mm (testo 6612, 6613)</td>
</tr>
</tbody>
</table>
2.2.1.4 Filters

One of the following filters or protection caps can be used for each probe version:

<table>
<thead>
<tr>
<th>Filter*</th>
<th>Article no.**</th>
<th>Characteristic</th>
<th>Length A (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 01</td>
<td>0554 0647</td>
<td>Stainless steel sintered filter</td>
<td>33</td>
</tr>
<tr>
<td>M 02</td>
<td>0554 0757</td>
<td>Metal wire protection cap</td>
<td>40.3</td>
</tr>
<tr>
<td>M 03</td>
<td>0554 0759</td>
<td>Sintered PTFE filter</td>
<td>35</td>
</tr>
<tr>
<td>M 04</td>
<td>0554 0755</td>
<td>Open metal protection cap</td>
<td>35</td>
</tr>
<tr>
<td>M 05</td>
<td>0192 0265</td>
<td>Open ABS plastic cap</td>
<td>25</td>
</tr>
<tr>
<td>M 06</td>
<td>0554 9913</td>
<td>PTFE filter with drip hole</td>
<td>35</td>
</tr>
<tr>
<td>M 07</td>
<td>0554 9913 + 0554 0166</td>
<td>PTFE filter with drip hole and condensation protector</td>
<td>35 55</td>
</tr>
<tr>
<td>M 08</td>
<td>0554 6000</td>
<td>Filter for H₂O₂ atmospheres</td>
<td>35</td>
</tr>
</tbody>
</table>

* When ordering the probe, please use this filter code, cf. chapter 2.2.1.3, Ordering options for testo 6610 probes (0555 6610).

** When purchasing a replacement (filters only), please use this order number.
2.2.2 testo 6611 wall probe

The wireless testo 6611 probe is inserted into the testo 6681 humidity transmitter that is mounted on the wall and ready-wired.

At a glance

![Diagram with labels: 1 Filter (including: humidity and temperature sensor), 2 Probe shaft, 3 Key, 4 Connector]

Application

- Monitoring and regulating the production and storage air quality when manufacturing and storing hygroscopic products
- Meeting the top accuracy requirements
- Clean room applications for which a metal housing is required.
Technical Data

Parameters
- Humidity (% °Ctd/°Ftd), etc.
- Temperature

Measuring range
- Humidity: 0 to 100 % RH
- Temperature: -20 to +70 °C/4 to +158 °F

Material
- Probe shaft: Stainless steel
- Connector: ABS plastic

Accuracy (at 25 °C/77 °F)*
Length 200 mm
Humidity
- ± (1,0 % RH + 0.007 x reading) for 0 to 90 % RH
- ± (1,4 % RH + 0.007 x reading) for 90 to 100 % RH
- 0.02 % RH/K, dependent upon the process temperature (with a deviation of 25 °C/+77 °F)
- 0.02 % RH/K, dependent upon the electronics temperature (with a deviation of 25 °C/+77 °F)

Temperature
- ±0.15 °C (0.27 °F)
with slope PT1000 class AA

* Refer to the charts below for the correlation between temperature and accuracy.

Length 70 mm
As with length of 200 mm, but with additional measuring error, specified for the operating mode 2 channels at 12 mA, without display light, relay off:
Humidity: ±1.6 % RH (additional)
Temperature: ±0.6 °C / ±1.1 °F (additional)

Reproducibility
- Better than ±0.2 % RH

Sensor
Response time without protective filter: t 90 max. 15 sec.

Probe dimensions
- Diameter of probe shaft: 12 mm
- E = 55 mm
- L = approx. 70 mm or 200 mm
- L – A = 35 mm or 165 mm
- A, see Table Filters, chapter 2.2.1.4.

1 For constant use in high humidity (> 80% rF at ≤ 30°C for > 12 h, > 60% rF at > 30°C for > 12 h), please contact us via www.testo.com/service-contact
Measuring accuracy of testo 6611 wall probe

Humidity error according to amount \(|\pm \% \text{RH}|\) as a factor of process humidity

Temperature error as a factor of process temperature and temperature of electronics
2.2.3 testo 6612 duct probe

The testo 6612 probe measures the humidity and temperature in air ducts.

At a glance

1. Filter (including: humidity and temperature sensor)
2. Probe shaft
3. Wall/duct holder (accessories, Order no.: 0554 6651)
4. Mounting bracket (permanently joined to probe shaft)
5. Probe cable
6. Key
7. Connector

In the event of overpressures, the probe may become a projectile.

For assembly, see Pressure resistance on the following page.
Application

- Monitoring and regulating the production and storage air quality in air ducts when manufacturing and storing hygroscopic products
- Meeting the top accuracy requirements
- Air duct applications for which a metal housing is required.

Technical Data

Parameters

- Humidity (% RH/°Ctd/°Ftd), etc.
- Temperature

Measuring range

- Humidity: 0 to 100 % RH
- Temperature: -30 to +150 °C/-22 to +302 °F

Material

- Probe shaft: Stainless steel
- Line: Sheathed, FEP
- Connector: ABS plastic

Accuracy (at 25°C/77°F)*

Humidity

- ± (1.0 % RH + 0.007 x reading) for 0 to 90 % RH
- ± (1.4 % RH + 0.007 x reading) for 90 to 100 % RH
- 0.02 % RH/K, dependent upon the process temperature (with a deviation of 25 °C/+77 °F)
- 0.02 % RH/K, dependent upon the electronics temperature (with a deviation of 25 °C/+77 °F)

Temperature

- ±0.15 °C (0.27 °F)
Slope PT1000 class AA

* Refer to the charts below for the correlation between temperature and accuracy.

2 For constant use in high humidity (> 80% rF at ≤ 30°C for > 12 h, > 60% rF at > 30°C for > 12 h), please contact us via www.testo.com/service-contact
Reproducibility
- Better than ±0,2 % RH

Sensor
Response time without protective filter: t 90 max. 15 sec.

Probe dimensions
- Diameter of probe shaft: 12 mm
- L = approx. 200/300/500/800 mm
- L – A = 165/265/465/765 mm

- A, see Table Filters, chapter 2.2.1.4.

Cable length incl. probe shaft and filter
- Customized for duct version

Pressure resistance
- PN 10 (probe tip)**
** If installing probe under pressure, please use cutting ring screw connection (order no. 0554 1795).

Measuring accuracy of testo 6612 duct probe
Humidity error according to amount |±% RH| as a factor of process humidity

![Graph showing humidity error as a function of process humidity]
Temperature error as a factor of process temperature and temperature of electronics

![Graph showing temperature error as a factor of process temperature and temperature of electronics.](image)

- System error 6681 + probe, electronics 25 °C/77 °F
- System error 6681 + probe, electronics -25 °C to +70 °C/-13 to +158 °F
2.2.4 testo 6613 cable probe

The testo 6613 probe is used when the spatial separation of the transmitter and probe is required.

At a glance

In the event of overpressures, the probe may become a projectile.

For assembly, see **Pressure resistance** on the following page.

Application

- Monitoring and regulating industrial humidity processes (apart from high-humidity processes), e.g. food production, storing fruit
- Monitoring the production and storage air quality when manufacturing and storing hygroscopic products
- Meeting the top accuracy requirements
- Clean room applications
- Applications for which a sturdy metal housing is required.
We recommend that the testo 6614 (heated) probe be used for continuous high-humidity processes.

Technical Data

Parameters
- Humidity (% RH/°Ctd/°Ftd), etc.
- Temperature

Measuring range
- Humidity: 0 to 100 % RH
- Temperature: -70 to *+180 °C/-94 to +356 °F

Material
- Probe shaft: Stainless steel
- Line: Sheathed, FEP
- Connector: ABS plastic

Accuracy (at 25 °C/77 °F)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>± (1,0 % RH + 0.007 x reading) for 0 to 90 % RH</td>
</tr>
<tr>
<td>Temperature</td>
<td>±0.15 °C (0.27 °F)</td>
</tr>
</tbody>
</table>

Temperature
- ± (1,4 % RH + 0.007 x reading) for 90 to 100 % RH
- 0.02 % RH/K, dependent upon the process temperature (with a deviation of 25 °C/+77 °F)
- 0.02 % RH/K, dependent upon the electronics temperature (with a deviation of 25 °C/+77 °F)

Reproducibility
- Better than ±0,2 % RH

For constant use in high humidity (>80 % rF at ≤30°C for >12 h, >60 % rF at >30°C for >12 h), please contact us via www.testo.com/service-contact
Response time without protective filter: t₉₀ max. 15 sec.

Probe dimensions
- Diameter of probe shaft: 12 mm
- L = approx. 120/200/300/500/800 mm
- L – A = 85/165/265/465/765 mm
- A, see Table *Filters, chapter 2.2.1.4.*

Probe length incl. probe shaft and filter
- 1/2/5/10 m

Pressure resistance
- PN 10 (probe tip)
- PN 1 (if end of probe/cable is involved in process)

** If installing probe under pressure, please use cutting ring screw connection (order no. 0554 1795).

Measuring accuracy of testo 6613 cable probe

Humidity error according to amount |±% RH| as a factor of process humidity
Temperature error as a factor of process temperature and temperature of electronics

![Graph showing temperature error as a factor of process temperature and temperature of electronics]

- System error 6681 + probe, electronics 25 °C/77 °F
- System error 6681 + probe, electronics -25 °C to +70 °C/-13 to +158 °F
2.2.5 testo 6614 heated cable probe

The testo 6614 heatable probe is suitable for use in high-humidity processes in which there is the possibility of condensation for the probe.

Please also see *volume 1, chapter 1.3.3.5*, for the functional principle of the testo 6614.

At a glance

![Diagram of testo 6614 heated cable probe]

1. Connector
2. Key
3. Probe cable
4. Probe shaft
5. Filter (including: humidity and temperature sensor)
6. Cable for temperature probe
7. Temperature probe
8. Condensation protection (0554 0166/0554 0117)

In the event of overpressures, the probe may become a projectile.

For assembly, see **Pressure resistance** on the following page.
Application

- Monitoring and regulating high-humidity processes, e.g. drying (ceramics, tobacco, wood, food) and maturing (cheese, fruit).

- At flow velocities > 1 m/s, an additional measuring uncertainty, not higher than +1.5 % RH, is to be expected. To prevent this error and ensure the highest measuring accuracy: Use condensation protector 0554 0166.

Technical Data

Parameters

- Humidity (% RH/°Ctd/°Ftd), etc.
- Temperature

Measuring range

- Humidity: 0 to 100 % RH
- Temperature: -40 to +180 °C/-40 to +356 °F

Material

- Probe shaft: Stainless steel
- Line: Sheathed, FEP
- Connector: ABS plastic

Accuracy (at 25 ºC/77 ºF)*

Humidity
- ± (1.0 % RH + 0.007 x reading) for 0 to 100 % RH

- 0.02 % RH/K, dependent upon the process temperature (with a deviation of 25 ºC/+77 ºF)
- 0.02 % RH/K, dependent upon the electronics temperature (with a deviation of 25 ºC/+77 ºF)

Temperature
- ±0.15 ºC (0.27 ºF)
- Slope PT1000 class AA

* Refer to the charts below for the correlation between temperature and accuracy.

Reproducibility

- Better than ±0,2 % RH

Sensor

Response time without protective filter: t 90 max. 15 sec.
Probe dimensions
- Diameter of probe shaft: 12 mm
- Diameter of temp. probe: 3 mm
- L = approx. 200/500 mm
- L – A = 165/465 mm
- A, see Table Filters, chapter 2.2.1.4.

Probe length incl. probe shaft and filter
- 1/2/5/10 m

Pressure resistance**
- PN 10 (probe tip)
- PN 1 (if end of probe/cable is involved in process)
** If installing probe under pressure, please use cutting ring screw connection (order no. 0554 1795).

Measuring accuracy of testo 6614 heated cable probe

Humidity error according to amount $|\pm % \text{RH}|$ as a factor of process humidity

![Graph showing humidity error for the testo 6614 heated cable probe]
Temperature error as a factor of process temperature and temperature of electronics

2.2.6 testo 6615 trace humidity cable probe (self-adjustment)

The testo 6615 probe corrects deviations in measurements by means of self-adjustment. This has a particular significance with low humidity values (in dewpoint range).

Please also see volume 1, chapter 1.3.3.6 for the functional principle of the testo 6615.

Only use testo 6615 with sintered PTFE filter (art. no. 0554 0759) or sintered stainless steel filter (art. no. 0554 0647).

During the self-adjustment phase the signal values of the analog outputs remain on hold, meaning they are frozen for the duration.
At a glance

In the event of overpressures, the probe may become a projectile.

For assembly, see **Pressure resistance** on the following page.

Application

- Monitoring and regulating trace humidity processes (compressed air with adsorption or membrane driers and plastic granulate driers)
- Used when spatial separation of transmitter and probe is required.
Technical Data

Parameters
- Dewpoint (°Ctd/°Ftd), etc.
- Temperature

Measuring range
- Dewpoint: -60 to +30 °Ctd/-148 to +212 °Ftd
- Temperature: -40 to +120 °C/-40 to +248 °F
(Temp. durability up to +180 °C/+356 °F)

Material
- Probe shaft: Stainless steel
- Line: Sheathed, FEP
- Connector: ABS plastic

Accuracy (at 25 °C/77 °F)*

Dewpoint
- ±1 K at 0 °Ctd/+32 °Ftd
- ±2 K at -40 °Ctd/-40 °Ftd
- ±4 K at -50 °Ctd/-58 °Ftd
- ±6 K at -60 °Ctd/-76 °Ftd

Dependency on process temperature (Deviation from 25 °C/77 °F)
- ±0,1 Ktf/K at -40 °C...25 °C/-40 °F...+77 °F
- ±0,2 Ktf/K at 25 °C...50 °C/77 °F...+122 °F
- ±0,4 Ktf/K at 50 °C...120 °C/+122 °F...+248 °F

Temperature
- ±0.15 °C (0.27 °F)
Slope PT100 class AA
* Refer to the charts below for the correlation between temperature and accuracy.

Reproducibility
- Better than ±0.2 % RH

Sensor
Response time without protective filter: t 90 max. 15 sec.

Probe dimensions
- Diameter of probe shaft: 12 mm
- L = approx. 200/500 mm
- L – A = 165/465 mm
- A, see Table Filters, chapter 2.2.1.4.

Probe length incl. probe shaft and filter
- 1/2/5/10 m
Pressure resistance
- PN 16 (probe tip)** ** If installing probe under pressure, please use cutting ring screw connection (order no. 0554 1795).

Measuring accuracy of testo 6615 trace humidity cable probe

Dewpoint error numerically $\pm \%$RH dependent on the process dewpoint

Temperature error as a factor of process temperature and temperature of electronics
2.2.7 testo 6617 cable probe (self-monitoring)

The testo 6617 probe is used if spatial separation of the transmitter and probe is required, particularly for media (gases, vapours) which can jeopardize/damage the humidity sensor (the testo 6617 has a self-monitoring and early-warning function for such applications).

At a glance

In the event of overpressures, the probe may become a projectile.

For assembly, see Pressure resistance on the following page.

Application

- Monitoring and regulating industrial humidity processes involving corrosive media (apart from high-humidity processes) with the exception of applications with HCL, HF and other acids and acidifiers in larger concentrations (SO₂, SO₃, NO₂)
- Meeting the top accuracy requirements
- Applications for which a sturdy metal housing is required.
This probe does NOT have a longer life with exposure to aggressive media than the testo 6613, for example. However, early warning of damage to the sensor is given so that machine failures can be avoided.

2.2.7.1 Self-monitoring of cover electrode

Use in harsh ambient conditions with aggressive media in some cases incurs the risk of damage to the sensor.

Damage to the sensor is generally reflected by incorrect readings which occur a long time before the sensor is wrecked. If this damage to the sensor is not spotted until too late, high costs can be incurred due to unusable readings or machine shutdowns and waiting times until the sensor is replaced.

1. Cover electrode
2. Bottom electrode
3. Substrate
 (Ceramic substrate for mechanical protection)
4. Connections
 (protected against corrosion)
5. Dielectric layer

The testo 6617 has a unique self-monitoring function. This allows early detection of damage to the sensor, e.g.:

- Mechanical damage (e.g. scratches)
- Damage from aggressive gases (e.g. acids in aerosol form)
- Welling or detachment of polymer layer due to effects of solvents.

Once the self-monitoring reaches the specific limit value, the probe warning message "Sensor early warning" is issued.
Technical Data

Parameters
- Humidity (% RH/°Ctd/°Ftd)
- Temperature

Measuring range
- Humidity: 0 to 100 % RH
- Temperature: -40 to +180 °C/-40 to 356 °F

Material, weight
- Probe shaft: Stainless steel
- Line: Sheathed, FEP
- Connector: ABS plastic

Accuracy (at 25 °C/77 °F)*
- Humidity
 - ± (1.2 % RH + 0.007 x reading) for 0 to 90 % RH
 - ± (1.6 % RH + 0.007 x reading) for 90 to 100 % RH
 - 0.02 % RH/K, dependent upon the process temperature (with a deviation of 25 °C/+77 °F)
- 0.02 % RH/K, dependent upon the electronics temperature (with a deviation of 25 °C/+77 °F)

Temperature
- ±0.15 °C (0.27 °F)
Slope PT1000 class AA
* Refer to the charts below for the correlation between temperature and accuracy.

Reproducibility
- Better than ±0.2 % RH

Sensor
Response time without protective filter: t 90 max. 15 sec.

Probe dimensions
- Diameter of probe shaft: 12 mm
- L = approx. 200/500 mm
- L – A = 165/465 mm
- A, see Table Filters, chapter 2.2.1.4.

4 For constant use in high humidity (> 80% rF at ≤ 30°C for > 12 h, > 60% rF at > 30°C for > 12 h), please contact us via www.testo.com/service-contact
Product description

Probe length incl. probe shaft and filter
- 1/2/5/10 m

Pressure resistance
- PN 10 (probe tip)**
** If installing probe under pressure, please use cutting ring screw connection (order no. 0554 1795).

Measuring accuracy of testo 6617 cable probe (self-monitoring)

Humidity error according to amount |±% RH| as a factor of process humidity

![Graph showing humidity error](image)

Temperature error as a factor of process temperature and temperature of electronics

![Graph showing temperature error](image)

- System error 6681 + probe, electronics 25 °C/77 °F
- System error 6681 + probe, electronics -25 °C to +70 °C/-13 to +158 °F
2.3 Commissioning

2.3.1 Installing the probe

2.3.1.1 Installing the testo 6611 wall probe
The testo 6611 probe (wall version) simply has to be inserted into the socket of the testo 6681 transmitter.

2.3.1.2 Installing the testo 6612 duct probe
A description of the duct mounting of the testo 6612 probe can be found in volume 1, chapter 1.3.1.2.

2.3.1.3 Installing testo 6613/6614/6615/6617 probes
If used with these probes, the testo 6681 transmitter is mounted on the wall, see volume 1, chapter 1.3.1.1.

Install probe according to the application and the measuring and spatial conditions, cf. cases A1 to C below

In processes with which condensate forms at the humidity probe, install the probe vertically (filter points downwards).

A 1 Wall mounting of probe

![Diagram of wall mounting of probe](image-url)
A 2 Wall mounting of testo 6614 heated probe

When mounting the testo 6614 heated probe version, the temperature probe must be secured as close to the humidity probe as possible (max. 10 cm). An appropriate assembly tool is supplied with the testo 6614.
B 1 Duct mounting of probe

Engage transmitter in the holder on the end of the duct probe

Hole Ø 12.5 mm

Wall/duct holder
Order no. 0554 6651

Only atmospheric processes up to approx. 1 bar positive pressure. Alternatively, the single-hole duct holder (order no. 0554 1793) can also be used.
B 2 Duct mounting of testo 6614 heated probe

When mounting the testo 6614 heated probe version, the temperature probe must also be secured at a distance of approximately 10 cm from the humidity probe. An appropriate assembly tool is supplied with the testo 6614.

C Process mounting

- During installation, ensure that the probe cannot be damaged during operation.

For the testo 6614 (heated probe version), please use the cutting ring screw connection, order no. 0400 6193, to assemble the temperature probe.
2.3.2 Connecting/removing the probe to/from the transmitter

- Insert probe connector into socket of testo 6681 until it engages. The testo 6681 identifies which probe is connected.
- To remove the probe, the lock release button on the probe must be pressed so that this can be removed.

2.4 Maintenance and cleaning

2.4.1 Replacing filters/protection caps

2.4.1.1 Replacing the filter/protection cap for testo 6611 wall version

Do not damage the sensors when exchanging the filter/the protection cap and do not touch their surfaces!

1 Unscrew defective filter/protection cap (2) from probe shaft (1).
2. Screw new filter/protection cap onto probe shaft.

Screw on protection cap by hand, i.e. do not tighten it using a tool.

2.4.1.2 Replacing the filter/protection cap for testo 6612 duct version

Do not damage the sensors when exchanging the filter/the protection cap and do not touch their surfaces!

Hint:
Mark the insertion length of the probe shaft near the screw (9).

1. Undo screw (9) and pull shaft probe (7) together with filter/protection cap (8) from the wall/duct holder (5).
2 Un螺丝 defective filter/protection cap from probe shaft and screw on new filter/protection cap.

Screw on protection cap by hand, i.e. do not tighten it using a tool.

3 Replace O-ring (6) if necessary. Push probe shaft into duct as far as the marking and fix position with screw (9).

2.4.1.3 Replacing the filter/protection cap for cable versions

The following descriptions applies to these probes:

- testo 6613
- testo 6614
- testo 6615
- testo 6617

Do not damage the sensor when exchanging the filter/the protection cap and do not touch its surface!

1 Un螺丝 defective filter/protection cap (2) from probe shaft (1).
2 Screw new filter/protection cap onto probe shaft.
2.4.2 Cleaning the instrument and filter/protection cap

- Only clean the instrument carefully with a moist cloth.
- Do not use aggressive cleaning agents.
- Do not use any solvents.
- Unscrew cap or protection cap to clean, clean with compressed air and replace. Take care not to damage the sensor!

2.4.3 Replacing the sensor

Thanks to the probe concept (digital, plug-in), all probes can be changed in situ within seconds if necessary, generally without any interruption to the operation of the machine.

To maintain the extremely high accuracy of the testo 6610 probe, customers are not able to replace the sensor.

Please contact your Testo Service team for this.
3 Parameterizing, adjusting and analyzing software (P2A software)

3.1 Specifications

The P2A software is used for the parameterizing, adjustment and analysis of testo transmitters. The following applies:

- Generally, all testo transmitters (as of 2007) are supported.
- For each newly purchased Testo transmitter, a free software upgrade must be installed, containing the instrument drivers for all transmitters which are connectable at that time.
- This upgrade can be downloaded free of charge at any time from the Testo homepage www.testo.com/download-center (requires registration).

The software must only be bought one time, even for owners of several testo transmitters.

3.1.1 Functions and use

In the P2A software, two different file types are used: The instrument and the parameter file.

Instrument file

The parameters of a particular transmitter are stored in its so-called instrument file. Using this file, the parameters can be edited and the instrument can be tested and adjusted.

Instrument files also contain the respective histories in addition to the parameter data, i.e. "log books" are kept for the previous parameterizations, adjustments and messages (see chapter 3.3.5).

Instrument files are ".cfm" format files.
Parameter file
Parameter files are not tied to a specific individual transmitter and contain only parameter data/no history data.

If you use various instruments of the same type, you can create parameter files once (e.g. by saving the appropriate instrument file as the parameter file) and transmit these onto the other instruments.

Parameter files are ".cfp" format files.

3.1.2 System requirements

Operating system
- Windows® 7
- Windows® 8
- Windows® 10

Computer
The computer must fulfil the requirements of the respective operating system. The following requirements must additionally be fulfilled:
- Interface USB 1.1 or higher
- Graphic resolution min. 1024 x 768

Date and time settings are automatically taken over from the computer. The administrator must ensure that the system time is regularly synchronized with a reliable time source, in order to guarantee the authenticity of the data.

Software
The P2A software must be purchased and installed separately from the transmitter. If it is a new software version, the transmitter is already supported completely. Older P2A software versions can be updated via the P2A software upgrade.
3.1.3 Scope of delivery
Included in the scope of delivery are:

• P2A software
• USB driver

When working with the parameterizing, adjusting and analyzing software (P2A software), previous knowledge of Windows® operating systems is assumed.

3.2 First steps

3.2.1 Installing the software/driver

Administrator rights are required for installation.

3.2.1.1 Installing P2A software

1. Insert CD with P2A software. If the installation program does not start automatically:
 ▪ Open Windows Explorer and start the file Setup.exe on the software CD.
2. Follow the directions of the installation assistant.

3.2.1.2 Installing USB driver

Before installing the USB driver, please read the separate documentation that is enclosed with the USB driver CD.

3.2.1.3 P2A software upgrade

2. Select folder into which the downloaded Zip file was stored, and unzip the file.
4. Follow instructions from installation assistant.

3.2.2 Starting the software

3.2.2.1 Starting the program

- Click on All Programs (Windows® 7, Windows® 8, Windows® 10) | Testo | P2A- Software.

 In Windows® 7 the window User account control is opened when starting the software the first time.

 - Click on Accept.

The program window is opened (see chapter 3.3.1, User interface).

3.2.2.2 Establishing a connection with the instrument

Multiple instruments can be attached, however only one connection is active at all times.

- ✓ USB driver is installed (see chapter 3.2.1, Installing the software/driver).

1. Start the P2A software.

2. Connect adapter (supplied with the P2A software) to the service interface of the instrument (see volume 1, chapter 1.2.4, Service interface).

3. Connect instrument/adapter to the PC via the USB interface.

The instrument file of the attached instrument is shown in the file list.

3.2.2.3 Activating the connection with the instrument

- ▪ Click on the desired instrument file.

 The selected file is marked in colour and the connection with the instrument is activated.

 If a connection with the instrument is established when the program is started, the corresponding instrument file is marked automatically.
3.3 Using the software

3.3.1 User interface

<table>
<thead>
<tr>
<th>Menu</th>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>File</td>
<td>Open</td>
<td>Shows the Windows dialogue for searching and opening files.</td>
</tr>
<tr>
<td>Save as</td>
<td></td>
<td>Saves the parameters of an instrument or parameter file under a new name.</td>
</tr>
<tr>
<td>Edit</td>
<td>Copy</td>
<td>Copies the parameters of the marked instrument or parameter file in the cache.</td>
</tr>
<tr>
<td>Paste</td>
<td></td>
<td>Pastes the parameters from the cache in the marked instrument or parameter file.</td>
</tr>
</tbody>
</table>
Using the software

<table>
<thead>
<tr>
<th>Menu</th>
<th>Command</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>View</td>
<td>Toolbar</td>
<td>Activates/deactivates the toolbar or status bar.</td>
</tr>
<tr>
<td></td>
<td>Status bar</td>
<td></td>
</tr>
<tr>
<td>?</td>
<td>Check instrument connections</td>
<td>Checks the connections to a connected instrument without the instrument having to be activated.</td>
</tr>
<tr>
<td></td>
<td>Service</td>
<td>A text file with the most important information on the computer and the software is opened via Display service data.</td>
</tr>
<tr>
<td></td>
<td>About</td>
<td>Shows the version number of the P2A software.</td>
</tr>
</tbody>
</table>

Toolbar:
- Shows the Windows-compliant icons for editing.

File list:

<table>
<thead>
<tr>
<th>Icon</th>
<th>File</th>
<th>Explanation</th>
</tr>
</thead>
</table>
| ![Instrument file](#) | Instrument file | Connection to the instrument has been established.
<Type> <Serial number>.cfm
File name should not be changed. |
| ![Instrument file](#) | Instrument file | Connection to the instrument has not been established. |
| ![Parameter file](#) | Parameter file | <Type> <Serial number> <Date> <Time>.cfp
File name can be changed.
The name can be selected freely, but it is recommended that you retain the reference to the instrument.
Parameter files are always marked red; the parameter values they contain are only forwarded to the instrument after being transmitted to the instrument file. |
4 Function buttons:

[Change parameterization] see chapter 3.3.2
[Test/analyze transmitter] see chapter 3.3.3
[Adjust transmitter] see chapter 3.3.4
[Transmitter history] see chapter 3.3.5

Dialogues on editing and testing the instrument are opened by means of the buttons.

5 File information:

<table>
<thead>
<tr>
<th>Status</th>
<th>Shown in the window</th>
</tr>
</thead>
<tbody>
<tr>
<td>An instrument file is selected</td>
<td>Type, serial number, firmware version of the instrument or probe.</td>
</tr>
<tr>
<td>A parameter file is selected</td>
<td>Type, serial number and firmware version of instrument for which the parameter file was created.</td>
</tr>
<tr>
<td>Connection status</td>
<td>Green = connection is active, Red = connection is inactive.</td>
</tr>
</tbody>
</table>

6 Status bar:
Shows the current status when editing via the menu bar.

3.3.2 Editing instrument/parameter file

3.3.2.1 Changing instrument/parameter file

✓ The desired instrument/parameter file is marked.

1 Click on [Change parameterization].

The Properties of <Instrument type> <Serial number> dialogue is opened with the Change parameterization register.

If the parameters were transmitted from other parameter files into the instrument file, a message is shown with which you can transmit the new parameters to the connected instrument using [Yes].

If the parameters should not be transmitted, click on [No].

2 Change or enter parameters in the corresponding fields.
Unit/analog output

Explanation

All analog outputs are parameterized in this mask.

Unit/analog output (graphic)

- **Unit**: 0 to 1 V/5 V/10 V or 4 to 20 mA.
- **Vertical**: Current version of the analog output (cannot be changed).
- **Horizontal**: Min./max. scale end points of selected unit.

The curve changes in accordance with the entered value of scale minimum and maximum.

Scale minimum/maximum

The endpoints of the scaling can be selected up to the stored scale minimum and maximum. In the process, scaling can take place beyond the measuring range in order to adjust the analog output to the customer system, see *volume 1, chapter 1.2.8*.
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>Selection of the physical unit. When changing the unit, standard values are set for scale minimum and maximum (see transmitter instruction manual for the scale final values).</td>
</tr>
<tr>
<td>Caution!</td>
<td>When changing the phys. unit, the relay limit values are set to the assigned default values.</td>
</tr>
<tr>
<td>Signal delay (graphic)</td>
<td>Curve changes according to the set signal delay.</td>
</tr>
<tr>
<td>Signal delay</td>
<td>Time interval in stages of 1 to 15: 1 = no delay 15 = longest delay. The signal delay is added to the reaction time of the sensor. The signal delay shows averaging over the time interval of the selected stage in seconds: Example Stage 10 = average of the readings from the last 10 seconds.</td>
</tr>
</tbody>
</table>

The delay of the signal in relation to the change in the process is also significantly influenced by the selection of the particle filter.
Relay limit values 1 to 4

Explanation
In this mask, the relays or display alarms are parameterized.

Only have the transmitter wired and connected by authorized personnel with the voltage disconnected.

Relay x
Four relays are available (optional).

Not used
Relay is not used.
Hysteresis image and input options are hidden.

Collective alarm
A relay can be used as a collective alarm detector in the event that selected messages appear. See below for selection of the messages.

MIN monitoring
If switched to ON (NO contact) or OFF (NC contact) under the limit value; in the event of a subsequent exceeding of limit value plus hysteresis, it is switched to OFF (NO contact) or ON (NC contact).
<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAX monitoring</td>
<td>If switched to ON (NO contact) or OFF (NC contact) above the limit value; in the event of a subsequent undershooting of limit value minus hysteresis, it is switched to OFF (NO contact) or ON (NC contact).</td>
</tr>
</tbody>
</table>

The graphic display in the centre of the screen refers to the relay wiring as a NO contact (ON).

- **Hysteresis**: To avoid switching cycles.
- **Channel**: Selection of the channel that is to be monitored.
- **Limit value**: Values for the limits of the unit selected in Unit/analog output; 1 decimal place.

When changing the phys. unit, the relay limit values are set to the default values.
Collective alarm

Explanation

Selection of the messages (error, etc.) that should result in a collective alarm (OR linkage).

List field with checkboxes

Selection of which messages generated in the transmitter should be signalled as the collective alarm via the corresponding relay.
Basic settings

Explanation

Setting the absolute pressure and selection of the H$_2$O$_2$ evaporation process for the parameter °Ctm).

Absolute pressure

The absolute pressure is included in the calculation of the following units:
- °C$_{tdA}$ or °F$_{tdA}$
- g/kg or gr/lb
- ppmv/° vol.

H$_2$O$_2$ process

The calculation of the mixture dewpoint unit °Ctm is dependent upon the type of the evaporation process:
- with passive vaporization: H$_2$O$_2$ solution evaporates (via H$_2$O$_2$ water)
- with active vaporization: H$_2$O$_2$ solution is evaporated over a heated metal plate (with evaporated H$_2$O$_2$)
- Input field: Entering the weight proportion of the liquid H$_2$O$_2$ compared to water in %.
Display

<table>
<thead>
<tr>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setting the display functions (if a display is available on the transmitter).</td>
</tr>
</tbody>
</table>

Continuous display lighting
- Display lighting is permanently switched on.

Display lighting when button is pressed (10 seconds)
- When a particular button on the instrument is pressed, the display lights up for 10 seconds.

Display brightness (0 to 9)
- Setting the brightness between 0 and 9:
 - 0 = dark
 - 9 = light

Display contrast (0 to 9)
- Setting the contrast between 0 and 9:
 - 0 = lower contrast
 - 9 = higher contrast.
Field
Display language
Selection of the language.

New password
The password consists of four numbers, each of which must be between 1 and 9. If the password protection is not to be used, the numerical code "0000" must be entered.

Adopt new password
Button for confirming the new password.

Valid password
Display of the current password.

Self-adjustment
Parameterizing of testo 6615 probe, if this is used. (See *volume 1, chapter 1.3.3.6, page 39* and *chapter 2.2.7*).

Activate self-adjustment
Perform adjustment of testo 6615 probe (auto-correction). The automatic self-adjustment is switched on, which means the probe performs an offset adjustment every x hours. The frequency is given in hours.
Self-adjustment every

Setting the cycletime in which the self-adjustment is to be performed.

In order to receive reliable readings during the calibration or equalization period of the probe, testo recommends the shortest possible cycle time. A longer cycle time can be set in continuous operation.

Start self-adjustment

Start self adjustment at a defined time outside the cycle time.

3. Click on [Apply].

Changes are saved.

3.3.2.2 Saving parameters

Parameters can be saved in new parameter files.

1. Mark instrument/parameter file

2. Click on File > Save as in the menu bar.

3. Select storage location and enter the file name.

4. Click on [Save].

The new parameter file is shown in the file list.

Only the parameters are saved from an instrument file, the history data are not adopted.

The original name (Instrument type, Serial number) is suggested with the current date/time as standard, e.g. "teso 6681 01234578 061120 1403.cfp".

For a standard installation, the files are saved under "C:\Documents and Settings\All Users\Shared Documents\P2A Software". The path can differ depending on the version of the operating system.

3.3.2.3 Open parameter file

All parameter files stored in the standard directory path are automatically displayed in the file list when the software is started.
You can also open parameter files that are stored in other directories.

1. Click on File > Open in the menu bar.
2. Select the storage location and click on the requisite file.
3. Click on [Open].

 The selected file is opened. This can be changed and saved (see chapter 3.3.2.2).

3.3.2.4 Copying and pasting parameters

The parameters of a parameter file can be transmitted to an instrument file or another parameter file from the same instrument type.

1. Select file whose parameters are to be copied.
2. Click on Edit > Copy in the menu bar.
3. Select the file which is to be modified.
4. Click on Edit > Paste in the menu bar.

 The parameters are transmitted to the file.

 You can also use the common keyboard shortcuts for copying and pasting, i.e. CTRL C and CTRL V.

 Parameters can also be transmitted using drag & drop, where you drag the icon of the parameter file onto the icon of the target instrument file.

3.3.2.5 Deleting instrument/parameter file

Instrument/parameter files can be deleted from the file list.

1. Click on the file that is to be deleted with the right mouse button.
2. Select the command Delete in the context menu.

 The instrument or parameter file is deleted from the list.

3.3.3 Analyzing/testing the transmitter

In this section, you can test the outputs of the connected instrument, read off the limit values and reset the parameters to the factory settings.

The function is only available for instrument files.

3.3.3.1 Analyzing/testing the instrument

✓ The required instrument file is marked.
1. Click on [Test/analyze transmitter].
 The Properties of <Instrument type> <Serial number> dialogue is opened with the Test/analyze transmitter register.

2. Perform action:

<table>
<thead>
<tr>
<th>Action</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry out factory reset:</td>
<td>Reset the unit, limit value and hysteresis parameters to factory settings (see chapter 3.3.3.2).</td>
</tr>
<tr>
<td>Test analog output:</td>
<td>Test channel 1/2/3 (optional) (see chapter 3.3.3.3).</td>
</tr>
<tr>
<td>Test switch outputs:</td>
<td>Manually switch relays 1 to 4 to test for proper function (see chapter 3.3.3.4).</td>
</tr>
<tr>
<td>Min./max. values display:</td>
<td>Overview of the minimum and maximum values measured since the last reset of the transmitter (see chapter 3.3.3.5).</td>
</tr>
</tbody>
</table>

3. Click on [OK] or [Cancel] to close the dialogue.

3.3.3.2 Carry out factory reset

✓ The required instrument file is marked.

1. Click on [Test/analyze transmitter].
 The Properties of <Instrument type> <Serial number> dialogue is opened with the Test/analyze transmitter register.

 Current operating hours are shown.

3. Confirm control query to perform the reset.
 The values are reset to the customer-specific factory settings.

4. Click on [OK] or [Cancel] to close the dialogue.
3.3.3.3 Testing channel 1/2/3 analog output

✓ The required instrument file is marked.

1 Click on [Test/analyze transmitter].

The Properties of <Instrument type> <Serial number> dialogue is opened with the Test/analyze transmitter register.

2 Mark channel and test values.

<table>
<thead>
<tr>
<th>Field/button</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current reading</td>
<td>Readings are updated every second.</td>
</tr>
<tr>
<td>Unit</td>
<td>Unit according to the type of analog output.</td>
</tr>
<tr>
<td>Default value</td>
<td>Freely definable output value for the respective type of analog output (V or mA), 1 decimal place.</td>
</tr>
</tbody>
</table>
3.3.3.4 Testing switch output relays 1 to 4

1. Click on [Test/analyze transmitter].
 - The Properties of <Instrument type> <Serial number> dialogue is opened with the Test/analyze transmitter register.

2. Mark Relay tests and test the values.
Field/button | Explanation
---|---
Check the relay function (see *volume 1, chapter 1.4.6.6*).

[Activate relay n]
Close contact.
A warning informs that the value is being transmitted to a connected PLC, external display, etc. in the event of existing cabling.

[Deactivate relay n]
Open contact.
A warning informs that the value is being transmitted to a connected PLC, external display, etc. in the event of existing cabling.

3 Click on **[OK]** or **[Cancel]** to close the dialogue.
The analog output returns to Measuring Mode again.
3.3.3.5 Displaying min./max. values

The transmitter saves the minimum or maximum value for each channel (measured since the last voltage supply or since the last manual reset).

✓ The required instrument file is marked.

1 Click on [Test/analyze transmitter].

The Properties of <Instrument type> <Serial number> dialogue is opened with the Test/analyze transmitter register.

2 Mark Min./max. values.

<table>
<thead>
<tr>
<th>Field/button</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>View the min./max. values of each channel.</td>
<td></td>
</tr>
</tbody>
</table>

3 Reset Min./max. values.

4 Click on [Reset the min./max. values].

5 Confirm control query to perform the reset.
The values are reset to the default settings.

5 Click on [OK] or [Cancel] to close the dialogue.

3.3.4 Adjusting the transmitter

This function is used to adjust an attached instrument. The following adjustments may be carried out using the software:

- 1-point adjustment (offset)
- 2-point adjustment (upper and lower adjustment point)
- Analog adjustment (entry via assistant/wizard).

Also see volume 1, chapter 1.3.3 for this.

3.3.4.1 1-point adjustment

1 Expose the reference measuring instrument and the instrument to be adjusted to the same constant conditions and wait for equalization period to lapse.

2 Mark the instrument file of the connected instrument.

3 Click on [Adjusting the transmitter].
 The Properties of <Instrument type> <Serial number> dialogue is opened with the Adjusting the transmitter register.

4 Enter reference value and click on [Carry out 1-point adjustment].

5 Confirm confirmation request.
 The adjustment is carried out.
Field	**Explanation**
°C/°F | Selection of the unit; only for temperature adjustment.
Current reading | Reading in °C/°F or % RH. Readings are updated every second.
Reference value | Entry of the read-off value from the reference measuring instrument. Permissible entries:
- max. 5 % RH deviation (sum of all 1-point adjustments)
- max. 2K (°C) deviation (sum of all 1-point adjustments)

- Click on [Set offset to zero] to reset a transmitted reference value. The current reading is used again.

6. Click on [OK] or [Cancel] to close the dialogue.
3.3.4.2 2-point adjustment

Also see volume 1, chapter 1.3.3.3.

1 Expose the reference measuring instrument and the instrument to be adjusted to the same constant conditions and wait for equalization period to lapse.

2 Mark the instrument file of the connected instrument.

3 Click on [Adjusting the transmitter].
 The Properties of <Instrument type> <Serial number> dialogue is opened with the Adjusting the transmitter register.

4 Mark 11.3 %, enter the reference value for the lower adjustment point and click on [Lower adjustment point].
 The adjustment is carried out.

5 Mark 75.3 %, enter the reference value for the upper adjustment point and click on [Upper adjustment point].
 The adjustment is carried out.
### Field	Explanation
Current reading | Reading in % RH. Readings are updated every second.
Reference value | Entry of the read-off value from the reference measuring instrument.

Permissible entries:
- Lower adjustment point 10.3 to 12.3 % RH
- Upper adjustment point 74.3 to 76.3 % RH.

6 Click on [OK] or [Cancel] to close the dialogue.
3.3.4.3 Adjusting the analog output

1. Connect precision multimeter (see volume 1, chapter 1.3.3.4).
2. Mark the instrument file of the connected instrument.
3. Click on [Adjusting the transmitter].
 The Properties of <Instrument type> <Serial number> dialogue is opened with the Adjusting the transmitter register.
4. Click on [Start wizard...] and follow the instructions of the wizard.
 The adjustment is performed when the wizard is closed.

<table>
<thead>
<tr>
<th>Field</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field</td>
<td>Explanation</td>
</tr>
<tr>
<td>Default value</td>
<td>The analog output value is given at the output:</td>
</tr>
<tr>
<td></td>
<td>- Lower adjustment point: 10 % of the max. value</td>
</tr>
<tr>
<td></td>
<td>- Centre adjustment point: 50% of the max. value</td>
</tr>
<tr>
<td></td>
<td>- Upper adjustment point: 90 % of the max. value</td>
</tr>
<tr>
<td>Measured analog value</td>
<td>Required field:</td>
</tr>
<tr>
<td></td>
<td>Entry of the value read off at the multimeter.</td>
</tr>
</tbody>
</table>
3.3.5 Transmitter history

Parameterizations, adjustment processes and messages that have occurred are registered in the transmitter with an operating hours stamp.

In the history overviews (explained later in more detail), past processes and events can be made visible.

For parameter changes or adjustments that are performed directly at the instrument (via the user menu), "Transmitter" is entered in the **User** field and only the operating hour is entered in the **Date/time** field instead of operating hour/date/time.

For entries that are performed using the P2A software, the name of the user logged into Windows appears in the **User** field, while the operating hour is shown in the **Date/time** field.

1. Mark the instrument file of the connected instrument.
2. Click on [Transmitter history] button.
 The "**Properties of <Instrument type> <Serial number>**" dialogue is opened with the Transmitter history register.
3. Click on the required entry in the list to change the display.
Parameterization history

Explanation

Date/time Format of the PC time is adopted from the settings of the operating system.

User Name with which the user is logged into the operating system.

"MUF" (= transmitter) if the change was performed at the instrument.

Operating hours/date/time Operating hour/time stamp at which the change at the instrument was performed.

Comments Type of parameter change, e.g. "Unit of channel 2 from °F to °C".
Adjustment histories

Explanation

Selection: 1-point adjustments/2-point adjustments/Analog adjustments.

Date/time Format of the PC time is adopted from the settings of the operating system.

User Name with which the user is logged into the operating system.

"MUF" (= transmitter) if the change was performed at the instrument.

Operating hours/date/time Operating hour/time stamp at which the change at the instrument was performed.

Serial no. probe Serial number of the probe.

Reference value If no changes were performed, no value is displayed.

Unit Unit during the adjustment.
<table>
<thead>
<tr>
<th>Column</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actual value before adjustment</td>
<td>1-point adjustment: If no changes were performed, no value is displayed.</td>
</tr>
<tr>
<td>Offset from</td>
<td>1-point adjustment: Value before the adjustment.</td>
</tr>
<tr>
<td>Offset to</td>
<td>1-point adjustment: Value after the adjustment.</td>
</tr>
<tr>
<td>Offset</td>
<td>2-point adjustment: Difference between target and actual value reported by instrument.</td>
</tr>
<tr>
<td>Channel</td>
<td>Analog adjustment: Channel 1 to n.</td>
</tr>
<tr>
<td>Specification</td>
<td>Analog adjustment: Actual value.</td>
</tr>
<tr>
<td>Reading</td>
<td>Analog adjustment: Reference value entered.</td>
</tr>
<tr>
<td>Offset</td>
<td>Analog adjustment: Deviation at time of adjustment.</td>
</tr>
</tbody>
</table>
Error/status messages

<table>
<thead>
<tr>
<th>Date/time</th>
<th>Format of the PC time is adopted from the settings of the operating system.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating hours</td>
<td>Operating hour at which the message appeared in the instrument.</td>
</tr>
<tr>
<td>User</td>
<td>"MUF" (= transmitter) because the message was generated in the transmitter.</td>
</tr>
<tr>
<td>Message</td>
<td>e.g. "Wrong probe". A non-compatible probe was connected.</td>
</tr>
<tr>
<td>Type of message</td>
<td>e.g. early warning, status message.</td>
</tr>
</tbody>
</table>

- To print out the history data, click on [Print].
The printing job is automatically sent to the default printer for the operating system.

The printout can be edited using [Set up printer…].

4. Click on [OK] or [Cancel] to close the dialogue.
4 Tips and assistance

4.1 Questions and answers

<table>
<thead>
<tr>
<th>Question</th>
<th>Possible causes/solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connection to instrument cannot be established</td>
<td>Check connection cable/plug contacts</td>
</tr>
<tr>
<td>A message appears on the display</td>
<td>See volume 1, chapter 1.5.</td>
</tr>
<tr>
<td>Malfunction (with or without display)</td>
<td>Analysis using the P2A software, see chapter 3.3.3, Analyzing/testing the transmitter.</td>
</tr>
<tr>
<td>Undo adjustment</td>
<td>A 1-point temperature/humidity adjustment can be reset to the current reading using [Set offset to zero]. The actual values before the adjustment can be read out from the corresponding history table. 2-point adjustments and analog adjustments can only be undone by means of a factory reset.</td>
</tr>
<tr>
<td>When does a stable current reading appear?</td>
<td>After approx. 20 seconds</td>
</tr>
</tbody>
</table>

If we could not answer your question, please contact your dealer or Testo Customer Service. For contact data, see back of this document or web page www.testo.com/service-contact
4.2 Accessories and spare parts

An overview of the probes that can be used with the testo 6681 can be found in chapter 1.2.2.

<table>
<thead>
<tr>
<th>Designation</th>
<th>Article no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface and software</td>
<td></td>
</tr>
<tr>
<td>P2A software (parameterizing, adjusting, analyzing) incl. USB adapter</td>
<td>0554 6020</td>
</tr>
<tr>
<td>Fastenings, assembly aids</td>
<td></td>
</tr>
<tr>
<td>Wall/duct bracket with M3 screw for fastening the transmitter to the probe</td>
<td>0554 6651</td>
</tr>
<tr>
<td>and the probe to the wall/duct</td>
<td></td>
</tr>
<tr>
<td>Pressure-tight G 1/2" screw connection with cutting ring up to 16 bar</td>
<td>0554 1795</td>
</tr>
<tr>
<td>Pressure-tight G 1/2" screw connection with PTFE ring up to 6 bar</td>
<td>0554 1796</td>
</tr>
<tr>
<td>Plug-in connections</td>
<td></td>
</tr>
<tr>
<td>Set of M12 plug-in connections (connector and socket) for power and signal</td>
<td>0554 6682</td>
</tr>
<tr>
<td>lines</td>
<td></td>
</tr>
</tbody>
</table>
4.2 Accessories and spare parts

Dewpoint measurement (only with testo 6615)
- Pre-filter for the protection of the measurement chamber and sensor from contamination
 - 0554 3311
- Precision chamber for adjustable flow impact
 - 0554 3312

Ethernet
- Ethernet module for installation by customer
 - 0554 6656
- Ethernet plug (IP65)
 - 0554 6653

Sensor filters and protective caps
- Stainless steel sintered filter
 - 0554 0647
- Wire mesh filter
 - 0554 0757
- Sintered PTFE filter
 - 0554 0759
- Protection cap made of metal (open)
 - 0554 0755
- PTFE protection cap with drip hole
 - 0554 9913
- Condensation protector
 - 0554 0166
- Filter for H2O2 atmospheres
 - 0554 6000
- H2O2 protection cap
 - 0699 5867/1

Adjustment equipment
- Humidity adjustment set (11.3/75.3 % RH)
 - 0554 0660
- Extension and adjustment cable
 - 0554 6610

Supply
- Mains unit (desktop, wall-mounted)
 - 0554 1748
- Mains unit (top-hat rail mounting)
 - 0554 1749
<table>
<thead>
<tr>
<th>Calibration</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard ISO calibration certificate, transmitter + probes</td>
<td>0520 0176</td>
</tr>
<tr>
<td>Special ISO calibration certificate, transmitter + probes</td>
<td>0520 0066</td>
</tr>
<tr>
<td>Standard DAkkS calibration certificate, transmitter + probes</td>
<td>0520 0276</td>
</tr>
<tr>
<td>Special DAkkS calibration certificate, transmitter + probes</td>
<td>0520 0236</td>
</tr>
<tr>
<td>ISO- calibration certificate humidity, probes</td>
<td>0520 0076</td>
</tr>
<tr>
<td>DAkkS calibration certificate temperature, probes</td>
<td>0520 0261</td>
</tr>
</tbody>
</table>
4.2.1 Ordering options for testo 6681 transmitter (0555 6681)

<table>
<thead>
<tr>
<th>Order code</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axx</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td></td>
</tr>
<tr>
<td>A01</td>
<td>Currently no further selection of variants</td>
</tr>
<tr>
<td>Bxx Analog output</td>
<td></td>
</tr>
<tr>
<td>B01</td>
<td>4 to 20 mA (2-wire, 24 VDC) (not with relay, not with testo 6614, 6615 probes), not with Ethernet module</td>
</tr>
<tr>
<td>B02</td>
<td>0 to 1 V (4-wire, 24 VAC/DC)</td>
</tr>
<tr>
<td>B03</td>
<td>0 to 5 V (4-wire, 24 VAC/DC)</td>
</tr>
<tr>
<td>B04</td>
<td>0 to 10 V (4-wire, 24 VAC/DC)</td>
</tr>
<tr>
<td>B05</td>
<td>0 to 20 mA (4-wire, 24 VAC/DC)</td>
</tr>
<tr>
<td>B06</td>
<td>4 to 20 mA (4-wire, 24 VAC/DC)</td>
</tr>
<tr>
<td>Cxx Display</td>
<td></td>
</tr>
<tr>
<td>C00</td>
<td>without display</td>
</tr>
<tr>
<td>C02</td>
<td>with display/English</td>
</tr>
<tr>
<td>C03</td>
<td>with display/German</td>
</tr>
<tr>
<td>C04</td>
<td>with display/French</td>
</tr>
<tr>
<td>C05</td>
<td>with display/Spanish</td>
</tr>
<tr>
<td>C06</td>
<td>with display/Italian</td>
</tr>
<tr>
<td>C07</td>
<td>with display/Japanese</td>
</tr>
<tr>
<td>Dxx Cable entry</td>
<td></td>
</tr>
<tr>
<td>D01</td>
<td>M16 PG screw connection (with relay, also M20)</td>
</tr>
<tr>
<td>D02</td>
<td>Cable entry NPT 1/2"</td>
</tr>
<tr>
<td>D03</td>
<td>Plug-in connections for power and signal lines</td>
</tr>
<tr>
<td>Exx Ethernet module</td>
<td></td>
</tr>
<tr>
<td>E00</td>
<td>without Ethernet module</td>
</tr>
<tr>
<td>E01</td>
<td>with Ethernet module</td>
</tr>
<tr>
<td>Order code</td>
<td>Characteristic</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Fxx</td>
<td>Channel 1 Unit</td>
</tr>
<tr>
<td></td>
<td>% RH/Min/Max</td>
</tr>
<tr>
<td>F01</td>
<td>°C/Min/Max</td>
</tr>
<tr>
<td>F02</td>
<td>°F/Min/Max</td>
</tr>
<tr>
<td>F03</td>
<td>°Ctd/Min/Max</td>
</tr>
<tr>
<td>F04</td>
<td>°Ftd/Min/Max</td>
</tr>
<tr>
<td>F05</td>
<td>g/kg/Min/Max</td>
</tr>
<tr>
<td>F06</td>
<td>gr/lb/Min/Max</td>
</tr>
<tr>
<td>F07</td>
<td>g/m³/Min/Max</td>
</tr>
<tr>
<td>F08</td>
<td>gr/ft³/Min/Max</td>
</tr>
<tr>
<td>F09</td>
<td>ppmvol/min/max</td>
</tr>
<tr>
<td>F10</td>
<td>°Cwb/Min/Max (wet bulb)</td>
</tr>
<tr>
<td>F11</td>
<td>°Fwb/Min/Max (wet bulb)</td>
</tr>
<tr>
<td>F12</td>
<td>kJ/kg/Min/Max (enthalpy)</td>
</tr>
<tr>
<td>F13</td>
<td>hPa/Min/Max (water vapour partial pressure)</td>
</tr>
<tr>
<td>F14</td>
<td>inch H2O/Min/Max (water vapour partial pressure)</td>
</tr>
<tr>
<td>F15</td>
<td>% Vol / min / max</td>
</tr>
<tr>
<td>Gxx</td>
<td>Channel 2 Unit</td>
</tr>
<tr>
<td></td>
<td>% RH/Min/Max</td>
</tr>
<tr>
<td>G01</td>
<td>°C/Min/Max</td>
</tr>
<tr>
<td>G02</td>
<td>°F/Min/Max</td>
</tr>
<tr>
<td>G03</td>
<td>°Ctd/Min/Max</td>
</tr>
<tr>
<td>G04</td>
<td>°Ftd/Min/Max</td>
</tr>
<tr>
<td>G05</td>
<td>g/kg/Min/Max</td>
</tr>
<tr>
<td>G06</td>
<td>gr/lb/Min/Max</td>
</tr>
<tr>
<td>G07</td>
<td>g/m³/Min/Max</td>
</tr>
<tr>
<td>G08</td>
<td>gr/ft³/Min/Max</td>
</tr>
<tr>
<td>G09</td>
<td>ppmvol/min/max</td>
</tr>
<tr>
<td>G10</td>
<td>°Cwb/Min/Max (wet bulb)</td>
</tr>
<tr>
<td>G11</td>
<td>°Fwb/Min/Max (wet bulb)</td>
</tr>
<tr>
<td>G12</td>
<td>kJ/kg/Min/Max (enthalpy)</td>
</tr>
<tr>
<td>G13</td>
<td>hPa/Min/Max (water vapour partial pressure)</td>
</tr>
<tr>
<td>G14</td>
<td>inch H2O/Min/Max (water vapour partial pressure)</td>
</tr>
</tbody>
</table>
4.2 Accessories and spare parts

<table>
<thead>
<tr>
<th>Order code</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>G18</td>
<td>% Vol / min / max</td>
</tr>
<tr>
<td>Hxx Relay</td>
<td></td>
</tr>
<tr>
<td>H00</td>
<td>without relay</td>
</tr>
<tr>
<td>H01</td>
<td>4 relay outputs, limit value monitoring</td>
</tr>
<tr>
<td>H02</td>
<td>4 relay outputs, channel 1 limit values and collective alarm</td>
</tr>
<tr>
<td>Ixx Optional 3rd analog output</td>
<td></td>
</tr>
<tr>
<td>I00</td>
<td>no optional 3rd analog output</td>
</tr>
<tr>
<td>I01</td>
<td>% RH/Min/Max</td>
</tr>
<tr>
<td>I02</td>
<td>°C/Min/Max</td>
</tr>
<tr>
<td>I03</td>
<td>°F/Min/Max</td>
</tr>
<tr>
<td>I04</td>
<td>°Ctd/Min/Max</td>
</tr>
<tr>
<td>I05</td>
<td>°Ftd/Min/Max</td>
</tr>
<tr>
<td>I06</td>
<td>g/kg /Min/Max</td>
</tr>
<tr>
<td>I07</td>
<td>gr/lb /Min/Max</td>
</tr>
<tr>
<td>I08</td>
<td>g/m³/Min/Max</td>
</tr>
<tr>
<td>I09</td>
<td>gr/ft³/Min/Max</td>
</tr>
<tr>
<td>I10</td>
<td>ppm Vol/min/max</td>
</tr>
<tr>
<td>I11</td>
<td>°Cwb/Min/Max (wet bulb)</td>
</tr>
<tr>
<td>I12</td>
<td>°Fwb/Min/Max (wet bulb)</td>
</tr>
<tr>
<td>I13</td>
<td>kJ/kg /Min/Max (enthalpy)</td>
</tr>
<tr>
<td>I14</td>
<td>hPa /Min/Max (water vapour partial pressure)</td>
</tr>
<tr>
<td>I15</td>
<td>inch H2O/Min/Max (water vapour partial pressure)</td>
</tr>
<tr>
<td>I16</td>
<td>°Ctm (H₂O₂ mixture dewpoint)</td>
</tr>
<tr>
<td>I17</td>
<td>°Ftm (H₂O₂ mixture dewpoint)</td>
</tr>
<tr>
<td>I18</td>
<td>% Vol / min / max</td>
</tr>
<tr>
<td>I19</td>
<td>%RHm (mixture humidity for H₂O₂)</td>
</tr>
<tr>
<td>Order code</td>
<td>Characteristic</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Kxx</td>
<td>Instruction manual</td>
</tr>
<tr>
<td></td>
<td>languages</td>
</tr>
<tr>
<td>K01</td>
<td>German/English instruction manual</td>
</tr>
<tr>
<td>K02</td>
<td>French/English instruction manual</td>
</tr>
<tr>
<td>K03</td>
<td>Spanish/English instruction manual</td>
</tr>
<tr>
<td>K04</td>
<td>Italian/English instruction manual</td>
</tr>
<tr>
<td>K05</td>
<td>Dutch/English instruction manual</td>
</tr>
<tr>
<td>K06</td>
<td>Japanese/English instruction manual</td>
</tr>
<tr>
<td>K07</td>
<td>Chinese/English instruction manual</td>
</tr>
</tbody>
</table>
4.2.2 Ordering options for testo 6610 probes (0555 6610)

<table>
<thead>
<tr>
<th>Order code</th>
<th>Characteristic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lxx</td>
<td>Probe type</td>
</tr>
<tr>
<td>L 11</td>
<td>Probe 6611</td>
</tr>
<tr>
<td>L 12</td>
<td>Probe 6612</td>
</tr>
<tr>
<td>L 13</td>
<td>Probe 6613</td>
</tr>
<tr>
<td>L 14</td>
<td>Probe 6614</td>
</tr>
<tr>
<td>L 15</td>
<td>Probe 6615</td>
</tr>
<tr>
<td>L 17</td>
<td>Probe 6617</td>
</tr>
<tr>
<td>Mxx</td>
<td>Protective filter</td>
</tr>
<tr>
<td>M 01</td>
<td>Stainless steel sintered filter</td>
</tr>
<tr>
<td>M 02</td>
<td>Metal wire protection cap</td>
</tr>
<tr>
<td>M 03</td>
<td>Sintered PTFE filter</td>
</tr>
<tr>
<td>M 04</td>
<td>Open metal protection cap</td>
</tr>
<tr>
<td>M 06</td>
<td>PTFE filter with drip hole</td>
</tr>
<tr>
<td>M 07</td>
<td>PTFE filter with drip hole and condensation protector</td>
</tr>
<tr>
<td>M 08</td>
<td>Filter for H2O2 atmospheres</td>
</tr>
<tr>
<td>Nxx</td>
<td>Cable length</td>
</tr>
<tr>
<td>N 00</td>
<td>Without cable (testo 6611)</td>
</tr>
<tr>
<td>N 01</td>
<td>1 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>N 02</td>
<td>2 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>N 05</td>
<td>5 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>N 10</td>
<td>10 m cable length (testo 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>N 23</td>
<td>Cable length specifically for duct versions (testo 6612)</td>
</tr>
<tr>
<td>Pxx</td>
<td>Probe length</td>
</tr>
<tr>
<td>P 07</td>
<td>Probe length approx. 70 mm (testo 6611)</td>
</tr>
<tr>
<td>P 12</td>
<td>Probe length approx. 120 mm (testo 6613)</td>
</tr>
<tr>
<td>P 20</td>
<td>Probe length approx. 200 mm (testo 6611, 6612, 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>P 30</td>
<td>Probe length approx. 300 mm (testo 6612, 6613, 6614)</td>
</tr>
<tr>
<td>Order code</td>
<td>Characteristic</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>P 50</td>
<td>Probe length approx. 500 mm (testo 6612, 6613, 6614, 6615, 6617)</td>
</tr>
<tr>
<td>P 80</td>
<td>Probe length approx. 800 mm (testo 6612, 6613)</td>
</tr>
</tbody>
</table>